ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting properties of La-substituted Bi-2201 crystals

144   0   0.0 ( 0 )
 نشر من قبل Ralph Mueller
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The superconducting gap Delta has been measured in Bi2Sr2-xLaxCuO6+d single crystals in a wide range of temperatures 4.2 K < T < Tc by point-contact and tunnelling spectroscopy for current in c-direction. The value of Delta(4.2 K) was found to scale with the critical temperature Tc in the whole range of doping levels with the ratio 2D/kTc = 12.5 +/- 2. The closing of the gap Ds at T = Tc has been registered in the underdoped, optimally doped as well as in the overdoped sam-ples.



قيم البحث

اقرأ أيضاً

F-substituted ROBiS2 (R = La, Ce, Nd) superconducting single crystals with different F concentration were grown successfully using CsCl/KCl flux. All the obtained single crystals had a plate-like shape with a well-developed ab-plane of 1-2 mm in size . The flux components of Cs, K, and Cl were not detected in the obtained single crystals by electron probe microanalysis. The grown single crystals of F-substituted LaOBiS2 and CeOBiS2 showed superconducting at about 3 K while the Tc of the F-substituted NdOBiS2 exhibited approximately 5 K. The superconducting anisotropy of the single crystals of F-substituted LaOBiS2 and NdOBiS2 was estimated to be 30-45 according to the effective mass model whereas those values were 13-21 for the F-substituted CeOBiS2 single crystals. The F-substituted CeOBiS2 single crystals exhibited magnetic order at about 7 K that apparently coexisted with superconductivity below around 3 K.
Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedra l networks is lower and the displacement parameters of alkali metal atoms are smaller than for KOs2O6, so the rattling of the alkali atoms in RbOs2O6 is less pronounced. Superconducting properties of RbOs2O6 in the mixed state have been well described within the London approach and the Ginzburg-Landau parameter kappa(0) = 31 has been derived from the reversible magnetization. This parameter is field dependent and changes at low temperatures from kappa = 22 (low fields) to kappa = 31 at H_{c2}. The thermodynamic critical field H_{c}(0) = 1.3 kOe and the superconducting gap 2delta/k_{B}T_{c} = 3.2 have been estimated. These results together with slightly different H_{c2}(T) dependence obtained for crystals and polycrystalline RbOs2O6 proof evidently that this compound is a weak-coupling BCS-type superconductor close to the dirty limit.
F-substituted NdOBiS2 superconducting single crystals were grown using CsCl/KCl flux. This is the first example of the single-crystal growth of a BiS2-based superconductor. The obtained single crystals had a plate-like shape with a size of 1-2 mm and a well-developed ab-plane. The crystal structure of the grown crystals was determined by single-crystal X-ray diffraction analysis to be the tetragonal space group P4/nmm (#129) with a = 3.996(3) A and c = 13.464(6) A. The chemical formula of the grown crystals was approximately Nd0.98(0.06)O0.7(0.1)F0.3(0.1)Bi0.98(0.04)S2, and Cs, K, and Cl were not detected in the grown crystals by electron probe microanalysis. The grown crystals had a critical temperature of approximately 5 K. The superconducting anisotropy of the single crystals was estimated to be about 30 from the effective mass model and the upper critical field.
Rare-earth nickelates with the infinite-layer crystal structure have been synthesized in thin film and powder form via topotactic oxygen reduction of the perovskite phase. The infinite-layer phase exhibits remarkable properties, such as superconducti vity and magnetic excitations with extraordinarily large bandwidth. Yet, superconductivity was exclusively reported for infinite-layer nickelate films, while polycrystalline powder samples of similar composition were insulating at all measured temperatures. Here, a high-pressure method was used to synthesize high-quality single crystals of the perovskite nickelate La$_{1-x}$Ca$_{x}$NiO$_3$ that were subsequently reduced to the infinite-layer phase La$_{1-x}$Ca$_{x}$NiO$_{2+delta}$. The obtained samples were characterized by X-ray diffraction, electron microscopy, Raman spectroscopy, magnetometry, and electrical transport measurements. Notably, the metal-like electrical conductivity of the infinite-layer crystals is reminiscent of weakly hole-doped infinite-layer thin films. Moreover, local electron energy-loss spectroscopy reveals close similarities between the electronic structures of the crystals and thin films. This work demonstrates the realization of infinite-layer nickelate crystals with macroscopic size as well as superior crystalline quality, and paves the way for future studies exploring whether more heavily Ca-substituted crystals host superconductivity in analogy to sufficiently hole-doped films.
Single crystals of SrFe2-xPtxAs2 (0 < x < 0.36) were grown using the self flux solution method and characterized using x-ray crystallography, electrical transport, magnetic susceptibility, and specific heat measurements. The magnetic/structural trans ition is suppressed with increasing Pt concentration, with superconductivity seen over the range 0.08 < x < 0.36 with a maximum transition temperature Tc of 16 K at x = 0.16. The shape of the phase diagram and the changes to the lattice parameters are similar to the effects of other group VIII elements Ni and Pd, however the higher transition temperature and extended range of superconductivity suggest some complexity beyond the simple electron counting picture that has been discussed thus far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا