ترغب بنشر مسار تعليمي؟ اضغط هنا

BiS2 - based superconductivity in F-substituted NdOBiS2

289   0   0.0 ( 0 )
 نشر من قبل Satoshi Demura
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have successfully synthesized a new BiS2-based superconductor NdOBiS2 with F-doping. This compound is composed of superconducting BiS2 layers and blocking NdO layers, which indicates that the BiS2 layer is the one of the common superconducting layers like the CuO2 layer of cuprates or Fe-As layer of Fe-based superconductors. We can obtain NdO1-xFxBiS2 with bulk superconductivity by a solid-state reaction under ambient pressure. Therefore, NdO1-xFxBiS2 should be the suitable material to elucidate the mechanism of superconductivity in the BiS2-layer.



قيم البحث

اقرأ أيضاً

F-substituted NdOBiS2 superconducting single crystals were grown using CsCl/KCl flux. This is the first example of the single-crystal growth of a BiS2-based superconductor. The obtained single crystals had a plate-like shape with a size of 1-2 mm and a well-developed ab-plane. The crystal structure of the grown crystals was determined by single-crystal X-ray diffraction analysis to be the tetragonal space group P4/nmm (#129) with a = 3.996(3) A and c = 13.464(6) A. The chemical formula of the grown crystals was approximately Nd0.98(0.06)O0.7(0.1)F0.3(0.1)Bi0.98(0.04)S2, and Cs, K, and Cl were not detected in the grown crystals by electron probe microanalysis. The grown crystals had a critical temperature of approximately 5 K. The superconducting anisotropy of the single crystals was estimated to be about 30 from the effective mass model and the upper critical field.
We report the electrical resistivity measurements under pressure for the recently discovered BiS2-based layered superconductors Bi4O4S3 and La(O,F)BiS2. In Bi4O4S3, the transition temperature Tc decreases monotonically without a distinct change in th e metallic behavior in the normal state. In La(O,F)BiS2, on the other hand, Tc initially increases with increasing pressure and then decreases above ? 1 GPa. The semiconducting behavior in the normal state is suppressed markedly and monotonically, whereas the evolution of Tc is nonlinear. The strong suppression of the semiconducting behavior without doping in La(O,F)BiS2 suggests that the Fermi surface is located in the vicinity of some instability. In the present study, we elucidate that the superconductivity in the BiS2 layer favors the Fermi surface at the boundary between the semiconducting and metallic behaviors.
Layered superconductors have provided some interesting fields in condensed matter physics owing to the low dimensionality of their electronic states. For example, the high-Tc (high transition temperature) cuprates and the Fe-based superconductors pos sess a layered crystal structure composed of a stacking of spacer (blocking) layers and conduction (superconducting) layers, CuO2 planes or Fe-Anion layers. The spacer layers provide carriers to the conduction layers and induce exotic superconductivity. Recently, we have reported superconductivity in the novel BiS2-based layered compound Bi4O4S3. It was found that superconductivity of Bi4O4S3 originates from the BiS2 layers. The crystal structure is composed of a stacking of BiS2 superconducting layers and the spacer layers, which resembles those of high-Tc cuprate and the Fe-based superconductors. Here we report a discovery of a new type of BiS2-based layered superconductor LaO1-xFxBiS2, with a Tc as high as 10.6 K.
Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln = Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivi ty with critical temperatures Tc of 3.5 and3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ~0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln = La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln = La, Ce, Pr, Nd).
We have systematically investigated the crystal structure, magnetic susceptibility, and electrical resistivity of the BiS2-based superconductor LaO0.5F0.5Bi(S1-xSex)2 (x = 0 - 0.7). With expanding lattice volume by Se substitution, bulk superconducti vity was induced for x > 0.2, and the highest Tc of 3.8 K was observed in x = 0.5 (LaO0.5F0.5BiSSe). Metallic conductivity was observed for x > 0.3 in the resistivity measurement, whereas semiconducting-like behavior was observed for x < 0.2. The induction of bulk superconductivity by the partial substitution of S by Se in the LaO0.5F0.5BiS2 superconductor should be positively linked to the enhancement of metallic conductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا