ﻻ يوجد ملخص باللغة العربية
In the past decade, nanopores have been developed extensively for various potential applications, and their performance greatly depends on the surface properties of the nanopores. Atomic layer deposition (ALD) is a new technology for depositing thin films, which has been rapidly developed from a niche technology to an established method. ALD films can cover the surface in confined regions even in nano scale conformally, thus it is proved to be a powerful tool to modify the surface of the synthetic nanopores and also to fabricate complex nanopores. This review gives a brief introduction on nanopore synthesis and ALD fundamental knowledge, then focuses on the various aspects of synthetic nanopores processing by ALD and their applications, including single-molecule sensing, nanofluidic devices, nanostructure fabrication and other applications.
In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited
A method to treat the surface of Nb is described which potentially can improve the performance of superconducting RF cavities. We present tunneling and x-ray photoemission spectroscopy (XPS) measurements at the surface of cavity-grade niobium samples
We investigated the use of dielectric layers produced by atomic layer deposition (ALD) as an approach to strain mitigation in composite silicon/superconductor devices operating at cryogenic temperatures. We show that the addition of an ALD layer acts
We develop an InAs nanowire gate-all-around field-effect transistor using a transparent conductive zinc oxide (ZnO) gate electrode, which is in-situ atomic layer deposited after growth of gate insulator of Al2O3. We perform magneto-transport measurem
Despite many efforts the origin of a ferromagnetic (FM) response in ZnMnO and ZnCoO is still not clear. Magnetic investigations of our samples, not discussed here, show that the room temperature FM response is observed only in alloys with a non-unifo