ﻻ يوجد ملخص باللغة العربية
In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Youngs modulus of 154 pm 13 GPa. This Youngs modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.
The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graph
The integration of two-dimensional (2D) materials with functional non-2D materials such as metal oxides is of key importance for many applications, but underlying mechanisms for such non-2D/2D interfacing remain largely elusive at the atomic scale. T
We develop an InAs nanowire gate-all-around field-effect transistor using a transparent conductive zinc oxide (ZnO) gate electrode, which is in-situ atomic layer deposited after growth of gate insulator of Al2O3. We perform magneto-transport measurem
Despite many efforts the origin of a ferromagnetic (FM) response in ZnMnO and ZnCoO is still not clear. Magnetic investigations of our samples, not discussed here, show that the room temperature FM response is observed only in alloys with a non-unifo
Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline