ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation

59   0   0.0 ( 0 )
 نشر من قبل Entin-Wohlman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The efficiency and cooling power of a two-terminal thermoelectric refrigerator are analyzed near the limit of vanishing dissipation (ideal system), where the optimal efficiency is the Carnot one, but the cooling power then unfortunately vanishes. This limit, where transport occurs only via a single sharp electronic energy, has been referred to as strong coupling or the best thermoelectric. It follows however, that parasitic effects that make the system deviate from the ideal limit, and reduce the efficiency from the Carnot limit, are crucial for the usefulness of the device. Among these parasitics, there are: parallel phonon conduction, finite width of the electrons transport band and more than a single energy transport channel. In terms of a small parameter characterizing the deviation from the ideal limit, the efficiency and power grow linearly, and the dissipation {em quadratically}. The results are generalized to the case of broken time-reversal symmetry, and the major nontrivial changes are discussed. Finally, the recent universal relation between the thermopower and the asymmetry of the dissipation between the two terminals is briefly discussed, including the small dissipation limit.

قيم البحث

اقرأ أيضاً

96 - O. Parlavecchio 2014
We derive fluctuation-dissipation relations for a tunnel junction driven by a high impedance microwave resonator, displaying strong quantum fluctuations. We find that the fluctuation-dissipation relations derived for classical forces hold, provided t he effect of the circuits quantum fluctuations is incorporated into a modified non-linear $I(V)$ curve. We also demonstrate that all quantities measured under a coherent time dependent bias can be reconstructed from their dc counterpart with a photo-assisted tunneling relation. We confirm these predictions by implementing the circuit and measuring the dc current through the junction, its high frequency admittance and its current noise at the frequency of the resonator.
201 - Sukumar Rajauria 2008
We have studied hybrid superconducting micro-coolers made of a double Superconductor-Insulator-Normal metal tunnel junction. Under subgap conditions, the Andreev current is found to dominate the single-particle tunnel current. We show that the Andree v current introduces additional dissipation in the normal metal equivalent to Joule heating. By analyzing quantitatively the heat balance in the system, we provide a full description of the evolution of the electronic temperature with the voltage. The dissipation induced by the Andreev current is found to dominate the quasiparticle tunneling-based cooling over a large bias range.
We present measurements of the dissipation and frequency shift in nanomechanical gold resonators at temperatures down to 10 mK. The resonators were fabricated as doubly-clamped beams above a GaAs substrate and actuated magnetomotively. Measurements o n beams with frequencies 7.95 MHz and 3.87 MHz revealed that from 30 mK to 500 mK the dissipation increases with temperature as $T^{0.5}$, with saturation occurring at higher temperatures. The relative frequency shift of the resonators increases logarithmically with temperature up to at least 400 mK. Similarities with the behavior of bulk amorphous solids suggest that the dissipation in our resonators is dominated by two-level systems.
We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equlibrium quantum systems.
Josephson junctions with three or more superconducting leads have been predicted to exhibit topological effects in the presence of few conducting modes within the interstitial normal material. Such behavior, of relevance for topologically-protected q uantum bits, would lead to specific transport features measured between terminals, with topological phase transitions occurring as a function of phase and voltage bias. Although conventional, two-terminal Josephson junctions have been studied extensively, multi-terminal devices have received relatively little attention to date. Motivated in part by the possibility to ultimately observe topological phenomena in multi-terminal Josephson devices, as well as their potential for coupling gatemon qubits, here we describe the superconducting features of a top-gated mesoscopic three-terminal Josephson device. The device is based on an InAs two-dimensional electron gas (2DEG) proximitized by epitaxial aluminum. We map out the transport properties of the device as a function of bias currents, top gate voltage and magnetic field. We find a very good agreement between the zero-field experimental phase diagram and a resistively and capacitively shunted junction (RCSJ) computational model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا