ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids

317   0   0.0 ( 0 )
 نشر من قبل Francesco Scazza
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equlibrium quantum systems.



قيم البحث

اقرأ أيضاً

We study quantum phase-slip (QPS) processes in a superconducting ring containing N Josephson junctions and threaded by an external static magnetic flux. In a such system, a QPS consists of a quantum tunneling event connecting two distinct classical s tates of the phases with different persistent currents [K. A. Matveev et al., Phys. Rev. Lett. 89, 096802 (2002)]. When the Josephson coupling energy EJ of the junctions is larger than the charging energy EC = e2/2C where C is the junction capacitance, the quantum amplitude for the QPS process is exponentially small in the ratio EJ/EC. At given magnetic flux each QPS can be described as the tunneling of the phase difference of a single junction of almost 2pi, accompanied by a small harmonic displacement of the phase difference of the other N-1 junctions. As a consequence the total QPS amplitude nu is a global property of the ring. Here we study the dependence of nu on the ring size N taking into account the effect of a finite capacitance C0 to ground which leads to the appearance of low-frequency dispersive modes. Josephson and charging effects compete and lead to a nonmonotonic dependence of the ring critical current on N. For N=infty, the system converges either towards a superconducting or an insulating state, depending on the ratio between the charging energy E0 = e2/2C0 and the Josephson coupling energy EJ.
We investigate experimentally the physics of quantum phase slips in one-dimensional Josephson Junction chains. These quantum phase-slips are induced by quantum phase fluctuations occurring on single junctions of the chain. In our experiment we can tu ne the strength of these fluctuations as each chain junction is realized in form of a SQUID leading to tunable Josephson coupling. We determine the ground state of the chain via switching current measurements of the chain shunted by a large Josephson junction. Our results can be well fitted with a tight binding Hamiltonian taking into account quantum phase-slips.
We study the relation between Josephson dynamics and topological excitations in a dilute Bose-Einstein condensate confined in a double-well trap. We show that the phase slips responsible for the self-trapping regime are created by vortex rings enteri ng and annihilating inside the weak-link region or created at the center of the barrier and expanding outside the system. Large amplitude oscillations just before the onset of self-trapping are also strictly connected with the dynamics of vortex rings at the edges of the inter-well barrier. Our results extend and analyze the dynamics of the vortex-induced phase slippages suggested a few decades ago in relation to the ac Josephson effect of superconducting and superfluid helium systems.
Majorana fermions, quantum particles that are their own anti-particles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently Majorana fermions have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing between two Fermions with opposite momenta (textit{% i.e.}, zero total momentum). On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, were predicted 50 years ago and then widely studied in many branches of physics. However, whether FFLO superconductors can also support Majorana fermions has not been explored. Here we show that Majorana fermions can exist in certain types of gapped FFLO states, yielding a new topological quantum matter: topological FFLO superfluids/superconductors. We demonstrate the existence of such topological FFLO superfluids and the associated Majorana fermions using spin-orbit coupled degenerate Fermi gases and derive their physical parameter regions. The potential implementation of topological FFLO superconductors in semiconductor/superconductor heterostructures are also discussed.
64 - E. Neri , F. Scazza , G. Roati 2018
Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an e xcellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of $^6$Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا