ﻻ يوجد ملخص باللغة العربية
We have studied hybrid superconducting micro-coolers made of a double Superconductor-Insulator-Normal metal tunnel junction. Under subgap conditions, the Andreev current is found to dominate the single-particle tunnel current. We show that the Andreev current introduces additional dissipation in the normal metal equivalent to Joule heating. By analyzing quantitatively the heat balance in the system, we provide a full description of the evolution of the electronic temperature with the voltage. The dissipation induced by the Andreev current is found to dominate the quasiparticle tunneling-based cooling over a large bias range.
We discuss inherent thermometry in a Superconductor - Normal metal - Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage.
A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to the bias current, is the dominant mechanism of dissipation for films of thickness d on the order of the coherence length XI; and of width w much narrower
We discuss very low temperature experiments on superconducting micro-coolers made of a double Normal metal - Insulator - Superconductor junction. We investigate with a high resolution the differential conductance of the micro-cooler as well as of add
We investigate the subgap transport properties of a S-F-Ne structure. Here S (Ne) is a superconducting (normal) electrode, and F is either a ferromagnet or a normal wire in the presence of an exchange or a spin- splitting Zeeman field respectively. B
In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybri