ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Field Optical Effect of a Core-Shell Nanostructure In Proximity to a Flat Surface

441   0   0.0 ( 0 )
 نشر من قبل Mingda Li
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide an analytical solution to study the near field optical effect of a core-shell nanostructure in proximity to a flat surface, within quasi-static approximation. The distribution of electrostatic potential and field enhancement in this complex geometry are obtained by solving a set of linear equations. This analytical result can be applied to a wide range of systems associated with near field optics and surface plasmon polaritons. As an illustration of the power of this technique, we study the field attenuation effect of oxidized shell in a silver tip in near field scanning microscope. The thickness of oxidized layer can be monitored by measuring the light intensity. In addition, we propose a novel method to detect local temperature with spatial resolution down to nm scale, based on a Ag-Au core-shell structure.



قيم البحث

اقرأ أيضاً

We have characterized a film of Ge_0.9Mn_0.1 forming self-organized nanocolumns perpendicular to the Ge substrate with high resolution scanning transmission electron microscopy combined with electron energy loss spectroscopy, and bulk magnetization a nd positive muon spin rotation and relaxation (muSR) measurements. The Mn-rich nanocolumns form a triangular lattice with no detectable Mn atoms in the matrix. They consist of cores surrounded by shells. The combined analysis of bulk magnetization and muSR data enables us to characterize the electronic and magnetic properties of both the cores and shells. The discovered phase separation of the columns between a core and a shell is probably relevant for other transition-metal doped semiconductors.
We analyze the performance of a recently reported Ge/Si core/shell nanowire transistor using a semiclassical, ballistic transport model and an sp3s*d5 tight-binding treatment of the electronic structure. Comparison of the measured performance of the device with the effects of series resistance removed to the simulated result assuming ballistic transport shows that the experimental device operates between 60 to 85% of the ballistic limit. For this ~15 nm diameter Ge nanowire, we also find that 14-18 modes are occupied at room temperature under ON-current conditions with ION/IOFF=100. To observe true one dimensional transport in a <110> Ge nanowire transistor, the nanowire diameter would have to be much less than about 5 nm. The methodology described here should prove useful for analyzing and comparing on common basis nanowire transistors of various materials and structures.
Coupling a normal metal wire to a superconductor induces an excitation gap in the normal metal. In the absence of disorder, the induced excitation gap is strongly suppressed by finite-size effects if the thickness of the superconductor is much smalle r than the thickness of the normal metal and the superconducting coherence length. We show that the presence of disorder, either in the bulk or at the exposed surface of the superconductor, significantly enhances the magnitude of the induced gap, such that it approaches the superconducting gap in the limit of strong disorder. We also discuss the shift of energy bands inside the normal-metal wire as a result of the coupling to the superconducting shell.
We study the properties of the surface states in three-dimensional topological insulators in the presence of a ferromagnetic exchange field. We demonstrate that for layered materials like Bi$_2$Se$_3$ the surface states on the top surface behave qual itatively different than the surface states at the side surfaces. We show that the group velocity of the surface states can be tuned by the direction and strength of the exchange field. If the exchange field becomes larger than the bulk gap of the material, a phase transition into a topologically nontrivial semimetallic state occurs. In particular, the material becomes a Weyl semimetal, if the exchange field possesses a non-zero component perpendicular to the layers. Associated with the Weyl semimetallic state we show that Fermi arcs appear at the surface. Under certain circumstances either one-dimensional or even two-dimensional surface flat bands can appear. We show that the appearence of these flat bands is related to chiral symmetries of the system and can be understood in terms of topological winding numbers. In contrast to previous systems that have been suggested to possess surface flat bands, the present system has a much larger energy scale, allowing the observation of surface flat bands at room temperature. The flat bands are tunable in the sense that they can be turned on or off by rotation of the ferromagnetic exchange field. Our findings are supported by both numerical results on a finite system as well as approximate analytical results.
Magneto-photoluminescence measurements of individual zinc-blende GaAs/AlAs core/shell nanowires are reported. At low temperature a strong emission line at 1.507 eV is observed under low power (nW) excitation. Measurements performed in high magnetic f ield allowed us to detect in this emission several lines associated with excitons bound to defect pairs. Such lines were observed before in epitaxial GaAs of very high quality, as reported by Kunzel and Ploog. This demonstrates that the optical quality of our GaAs/AlAs core/shell nanowires is comparable to the best GaAs layers grown by molecular beam epitaxy. Moreover, strong free exciton emission is observed even at room temperature. The bright optical emission of our nanowires in room temperature should open the way for numerous optoelectronic device applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا