ﻻ يوجد ملخص باللغة العربية
We study the properties of the surface states in three-dimensional topological insulators in the presence of a ferromagnetic exchange field. We demonstrate that for layered materials like Bi$_2$Se$_3$ the surface states on the top surface behave qualitatively different than the surface states at the side surfaces. We show that the group velocity of the surface states can be tuned by the direction and strength of the exchange field. If the exchange field becomes larger than the bulk gap of the material, a phase transition into a topologically nontrivial semimetallic state occurs. In particular, the material becomes a Weyl semimetal, if the exchange field possesses a non-zero component perpendicular to the layers. Associated with the Weyl semimetallic state we show that Fermi arcs appear at the surface. Under certain circumstances either one-dimensional or even two-dimensional surface flat bands can appear. We show that the appearence of these flat bands is related to chiral symmetries of the system and can be understood in terms of topological winding numbers. In contrast to previous systems that have been suggested to possess surface flat bands, the present system has a much larger energy scale, allowing the observation of surface flat bands at room temperature. The flat bands are tunable in the sense that they can be turned on or off by rotation of the ferromagnetic exchange field. Our findings are supported by both numerical results on a finite system as well as approximate analytical results.
A flat band in fermionic system is a dispersionless single-particle state with a diverging effective mass and nearly zero group velocity. These flat bands are expected to support exotic properties in the ground state, which might be important for a w
Electrons with large kinetic energy have a superconducting instability for infinitesimal attractive interactions. Quenching the kinetic energy and creating a flat band renders an infinitesimal repulsive interaction the relevant perturbation. Thus, fl
Magic-angle twisted bilayer graphene (MA-TBG) exhibits intriguing quantum phase transitions triggered by enhanced electron-electron interactions when its flat-bands are partially filled. However, the phases themselves and their connection to the puta
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known
We theoretically study the effect of magnetic moire superlattice on the topological surface states by introducing a continuum model of Dirac electrons with a single Dirac cone moving in the time-reversal symmetry breaking periodic pontential. The Zee