ترغب بنشر مسار تعليمي؟ اضغط هنا

A RAVE Investigation on Galactic open Clusters I. Radial velocities and metallicities

140   0   0.0 ( 0 )
 نشر من قبل Claudia Conrad
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Galactic open clusters (OCs) mainly belong to the young stellar population in the Milky Way disk, but are there groups and complexes of OCs that possibly define an additional level in hierarchical star formation? Current compilations are too incomplete to address this question, especially regarding radial velocities (RVs) and metallicities ($[M/H]$). Aims. Here we provide and discuss newly obtained RV and $[M/H]$ data, which will enable us to reinvestigate potential groupings of open clusters and associations. Methods.We extracted additional RVs and $[M/H]$ from the RAdial Velocity Experiment (RAVE) via a cross-match with the Catalogue of Stars in Open Cluster Areas (CSOCA). For the identified OCs in RAVE we derived RV and $[M/H]$ from a cleaned working sample and compared the results with previous findings. Results. Although our RAVE sample does not show the same accuracy as the entire survey, we were able to derive reliable RV for 110 Galactic open clusters. For 37 OCs we publish RV for the first time. Moreover, we determined $[M/H]$ for 81 open clusters, extending the number of OCs with $[M/H]$ by 69.



قيم البحث

اقرأ أيضاً

158 - Ivo Saviane 2012
Well determined radial velocities and abundances are essential for analyzing the properties of the Globular Cluster system of the Milky Way. However more than 50% of these clusters have no spectroscopic measure of their metallicity. In this context, this work provides new radial velocities and abundances for twenty Milky Way globular clusters which lack or have poorly known values for these quantities. The radial velocities and abundances are derived from spectra obtained at the Ca II triplet using the FORS2 imager and spectrograph at the VLT, calibrated with spectra of red giants in a number of clusters with well determined abundances. For about half of the clusters in our sample we present significant revisions of the existing velocities or abundances, or both. We also confirm the existence of a sizable abundance spread in the globular cluster M54, which lies at the center of the Sagittarius dwarf galaxy. In addition evidence is provided for the existence of a small intrinsic internal abundance spread (sigma [Fe/H](int) ~ 0.11-0.14 dex, similar to that of M54) in the luminous distant globular cluster NGC 5824. This cluster thus joins the small number of Galactic globular clusters known to possess internal metallicity ([Fe/H]) spreads.
The Radial Velocity Experiment (RAVE) is a magnitude-limited (9<I<12) spectroscopic survey of Galactic stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra (R~7500) cover the Ca-triplet region (8410-8795A). The 6th a nd final data release (DR6 or FDR) is based on 518387 observations of 451783 unique stars. RAVE observations were taken between 12 April 2003 and 4 April 2013. Here we present the genesis, setup and data reduction of RAVE as well as wavelength-calibrated and flux-normalized spectra and error spectra for all observations in RAVE DR6. Furthermore, we present derived spectral classification and radial velocities for the RAVE targets, complemented by cross matches with Gaia DR2 and other relevant catalogs. A comparison between internal error estimates, variances derived from stars with more than one observing epoch and a comparison with radial velocities of Gaia DR2 reveals consistently that 68% of the objects have a velocity accuracy better than 1.4 km/s, while 95% of the objects have radial velocities better than 4.0 km/s. Stellar atmospheric parameters, abundances and distances are presented in subsequent publication. The data can be accessed via the RAVE Web (http://rave-survey.org) or the Vizier database.
We present and discuss radial velocity and the very first metallicity measurements for nine evolved stars in the poorly known old open cluster NGC 7762. We isolated eight radial velocity cluster members and one interloper. Radial velocities are in go od agreement with previous studies. NGC 7762 turns out to be of solar metallicity within the uncertainties ([Fe/H]=0.04$pm$0.12). For this metallicity, the cluster age is 2.5$pm$0.2 Gyr, and falls in a age range where only a few old open clusters are known. With respect to previous studies, we find a larger distance, implying the cluster to be located at 900$^{+70}_{-50}$ pc from the Sun. For most of the elements we measure solar-scaled abundance ratios. We searched the literature for open clusters of similar age in the solar vicinity and found that NGC 7762 can be considered a twin of Ruprecht 147, a similar age cluster located at only 300 pc from the Sun. In fact, beside age, also metallicity and abundance ratios are very close to Ruprecht 147 values within the observational uncertainties.
115 - R. Carrera 2015
Context: Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R~8000) in the infrared region Ca II triplet lines (~8500 AA) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5~m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca II lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain <V_r> = 48.6+/-3.4, -58.4+/-6.8, 26.0+/-4.3 and -65.3+/-3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603 and NGC 7245, respectively. We found [Fe/H] =-0.25+/-0.14 and -0.15+/-0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has a low metallicity, [Fe/H] =-0.42+/-0.13, similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived a high metallicity ([Fe/H] =+0.43+/-0.15) for NGC 6603, which places this system among the most metal rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members.
76 - S. Vasquez 2018
Although the globular clusters in the Milky Way have been studied for a long time, a significant fraction of them lack homogeneous metallicity and radial velocity measurements. In an earlier paper we presented the first part of a project to obtain me tallicities and radial velocities of Galactic globular clusters from multiobject spectroscopy of their member stars using the ESO Very Large Telescope. In this paper we add metallicities and radial velocities for a new sample of 28 globular clusters, including in particular globular clusters in the MW halo and the Galactic bulge. Together with our previous results, this study brings the number of globular clusters with homogeneous measurements to $sim 69$ % of those listed in the W. Harris catalogue. As in our previous work, we have used the CaII triplet lines to derive metallicities and radial velocities. For most of the clusters in this study, this is the first analysis based on spectroscopy of individual member stars. The metallicities derived from the CaII triplet are then compared to the results of our parallel study based on spectral fitting in the optical region and the implications for different calibrations of the CaII triplet line strengths are discussed. We also comment on some interesting clusters and investigate the presence of an abundance spread in the globular clusters here. A hint of a possible intrinsic spread is found for NGC 6256, which therefore appears to be a good candidate for further study.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا