ﻻ يوجد ملخص باللغة العربية
Although the globular clusters in the Milky Way have been studied for a long time, a significant fraction of them lack homogeneous metallicity and radial velocity measurements. In an earlier paper we presented the first part of a project to obtain metallicities and radial velocities of Galactic globular clusters from multiobject spectroscopy of their member stars using the ESO Very Large Telescope. In this paper we add metallicities and radial velocities for a new sample of 28 globular clusters, including in particular globular clusters in the MW halo and the Galactic bulge. Together with our previous results, this study brings the number of globular clusters with homogeneous measurements to $sim 69$ % of those listed in the W. Harris catalogue. As in our previous work, we have used the CaII triplet lines to derive metallicities and radial velocities. For most of the clusters in this study, this is the first analysis based on spectroscopy of individual member stars. The metallicities derived from the CaII triplet are then compared to the results of our parallel study based on spectral fitting in the optical region and the implications for different calibrations of the CaII triplet line strengths are discussed. We also comment on some interesting clusters and investigate the presence of an abundance spread in the globular clusters here. A hint of a possible intrinsic spread is found for NGC 6256, which therefore appears to be a good candidate for further study.
Well determined radial velocities and abundances are essential for analyzing the properties of the Globular Cluster system of the Milky Way. However more than 50% of these clusters have no spectroscopic measure of their metallicity. In this context,
We have obtained high-res, high S/N ratio CCD echelle spectra of 10 bright red giants in 3 GCs (47Tuc, NGC6752 and NGC6397) roughly spanning the range of metallicities of the galactic GC system; they reveal no evidence of star to star variation of [F
Context. Galactic open clusters (OCs) mainly belong to the young stellar population in the Milky Way disk, but are there groups and complexes of OCs that possibly define an additional level in hierarchical star formation? Current compilations are too
Globular clusters (GCs) are found ubiquitously in massive galaxies and due to their old ages, they are regarded as fossil records of galaxy evolution. Spectroscopic studies of GC systems are often limited to the outskirts of galaxies, where GCs stand
The relaxation time at the half-mass radius of Galactic globular clusters (GGCs) is typically within a few Gyr. Hence, the majority of GGCs are expected to be well relaxed systems, given their age is around 12-13 Gyr. So any initial radial segregatio