ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial velocities and metallicities from infrared Ca II triplet spectroscopy of open clusters II. Berkeley 23, King 1, NGC 559, NGC 6603 and NGC 7245

114   0   0.0 ( 0 )
 نشر من قبل Ricardo Carrera R.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Carrera




اسأل ChatGPT حول البحث

Context: Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R~8000) in the infrared region Ca II triplet lines (~8500 AA) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5~m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca II lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain <V_r> = 48.6+/-3.4, -58.4+/-6.8, 26.0+/-4.3 and -65.3+/-3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603 and NGC 7245, respectively. We found [Fe/H] =-0.25+/-0.14 and -0.15+/-0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has a low metallicity, [Fe/H] =-0.42+/-0.13, similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived a high metallicity ([Fe/H] =+0.43+/-0.15) for NGC 6603, which places this system among the most metal rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of the chemistry and kinematics of red giants in the dwarf irregular galaxy NGC 6822. Spectroscopy at 8500 Angstroms was acquired for 72 red giant stars across two fields using FORS2 at the VLT. Line of sight extinction was individually estimated for each target star to accommodate the variable reddening across NGC 6822. The mean radial velocity was found to be v_helio = (52.8 +/- 2.2) km/s with dispersion rms = 24.1 km/s, in agreement with other studies. Ca II triplet equivalent widths were converted into [Fe/H] metallicities using a V magnitude proxy for surface gravity. The average metallicity was [Fe/H] = (-0.84 +/- 0.04) with dispersion rms = 0.31 dex and interquartile range 0.48. Our assignment of individual reddening values makes our analysis more sensitive to spatial variations in metallicity than previous studies. We divide our sample into metal-rich and metal-poor stars; the former are found to cluster towards small radii with the metal-poor stars more evenly distributed across the galaxy. The velocity dispersion of the metal-poor stars is higher than that of the metal-rich stars; combined with the age-metallicity relation this indicates that older populations have either been dynamically heated or were born in a less disclike distribution. The low ratio (v_rot/v_rms) suggests that within the inner 10, NGC 6822s stars are dynamically decoupled from the HI gas, possibly in a thick disc or spheroid.
We present a detailed near-infrared chemical abundance analysis of 10 red giant members of the Galactic open cluster NGC 752. High-resolution (R$simeq$45000) near-infrared spectral data were gathered with the Immersion Grating Infrared Spectrograph ( IGRINS), providing simultaneous coverage of the complete H and K bands. We derived the abundances of H-burning (C, N, O), $alpha$ (Mg, Si, S, Ca), light odd-Z (Na, Al, P, K), Fe-group (Sc, Ti, Cr, Fe, Co, Ni) and neutron-capture (Ce, Nd, Yb) elements. We report the abundances of S, P, K, Ce, and Yb in NGC 752 for the first time. Our analysis yields solar metallicity and solar abundance ratios for almost all of the elements heavier than the CNO group in NGC 752. O and N abundances were measured from a number of OH and CN features in the $H$ band, and C abundances were determined mainly from CO molecular lines in the K band. High excitation ion{C}{i} lines present in both near-infrared and optical spectra were also included in the C abundance determinations. Carbon isotopic ratios were derived from the R-branch band heads of first overtone (2-0) and (3$-$1) $^{12}$CO and (2-0) $^{13}$CO lines near 23440 AA and (3-1) $^{13}$CO lines at about 23730 AA. The CNO abundances and $^{12}$C/$^{13}$C ratios are all consistent with our giants having completed first dredge-up envelope mixing of CN-cyle products. We independently assessed NGC 752 stellar membership from Gaia astrometry, leading to a new color-magnitude diagram for this cluster. Applications of Victoria isochrones and MESA models to these data yield an updated NGC 752 cluster age (1.52 Gyr) and evolutionary stage indications for the program stars. The photometric evidence and spectroscopic light element abundances all suggest that the most, perhaps all of the program stars are members of the helium-burning red clump in this cluster.
We present and discuss radial velocity and the very first metallicity measurements for nine evolved stars in the poorly known old open cluster NGC 7762. We isolated eight radial velocity cluster members and one interloper. Radial velocities are in go od agreement with previous studies. NGC 7762 turns out to be of solar metallicity within the uncertainties ([Fe/H]=0.04$pm$0.12). For this metallicity, the cluster age is 2.5$pm$0.2 Gyr, and falls in a age range where only a few old open clusters are known. With respect to previous studies, we find a larger distance, implying the cluster to be located at 900$^{+70}_{-50}$ pc from the Sun. For most of the elements we measure solar-scaled abundance ratios. We searched the literature for open clusters of similar age in the solar vicinity and found that NGC 7762 can be considered a twin of Ruprecht 147, a similar age cluster located at only 300 pc from the Sun. In fact, beside age, also metallicity and abundance ratios are very close to Ruprecht 147 values within the observational uncertainties.
We present and analyse 120 spectroscopic binary and triple cluster members of the old (4 Gyr) open cluster M67 (NGC 2682). As a cornerstone of stellar astrophysics, M67 is a key cluster in the WIYN Open Cluster Study (WOCS); radial-velocity (RV) obse rvations of M67 are ongoing and extend back over 45 years, incorporating data from seven different telescopes, and allowing us to detect binaries with orbital periods <~10^4 days. Our sample contains 1296 stars (604 cluster members) with magnitudes of 10 <= V <= 16.5 (about 1.3 to 0.7 Msolar), from the giants down to ~4 mag below the main-sequence turnoff, and extends in radius to 30 arcminutes (7.4 pc at a distance of 850 pc, or ~7 core radii). This paper focuses primarily on the main-sequence binaries, but orbital solutions are also presented for red giants, yellow giants and sub-subgiants. Out to our period detection limit and within our magnitude and spatial domain, we find a global main-sequence incompleteness-corrected binary fraction of 34% +/- 3%, which rises to 70% +/- 17% in the cluster center. We derive a tidal circularization period of P_circ = 11.0 +1.1 -1.0 days. We also analyze the incompleteness-corrected distributions of binary orbital elements and masses. The period distribution rises toward longer periods. The eccentricity distribution, beyond P_circ, is consistent with a uniform distribution. The mass-ratio distribution is also consistent with a uniform distribution. Overall, these M67 binaries are closely consistent with similar binaries in the galactic field, as well as the old (7 Gyr) open cluster NGC 188. WIYN Open Cluster Study. 83.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا