ترغب بنشر مسار تعليمي؟ اضغط هنا

Hedging under an expected loss constraint with small transaction costs

159   0   0.0 ( 0 )
 نشر من قبل Bruno Bouchard
 تاريخ النشر 2013
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of option hedging in a market with proportional transaction costs. Since super-replication is very costly in such markets, we replace perfect hedging with an expected loss constraint. Asymptotic analysis for small transactions is used to obtain a tractable model. A general expansion theory is developed using the dynamic programming approach. Explicit formulae are also obtained in the special cases of an exponential or power loss function. As a corollary, we retrieve the asymptotics for the exponential utility indifference price.



قيم البحث

اقرأ أيضاً

An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w elfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.
270 - Jan Kallsen , Shen Li 2013
We consider an investor with constant absolute risk aversion who trades a risky asset with general Ito dynamics, in the presence of small proportional transaction costs. Kallsen and Muhle-Karbe (2012) formally derived the leading-order optimal tradin g policy and the associated welfare impact of transaction costs. In the present paper, we carry out a convex duality approach facilitated by the concept of shadow price processes in order to verify the main results of Kallsen and Muhle-Karbe under well-defined regularity conditions.
We study superhedging of contingent claims with physical delivery in a discrete-time market model with convex transaction costs. Our model extends Kabanovs currency market model by allowing for nonlinear illiquidity effects. We show that an appropria te generalization of Schachermayers robust no arbitrage condition implies that the set of claims hedgeable with zero cost is closed in probability. Combined with classical techniques of convex analysis, the closedness yields a dual characterization of premium processes that are sufficient to superhedge a given claim process. We also extend the fundamental theorem of asset pricing for general conical models.
We investigate the general structure of optimal investment and consumption with small proportional transaction costs. For a safe asset and a risky asset with general continuous dynamics, traded with random and time-varying but small transaction costs , we derive simple formal asymptotics for the optimal policy and welfare. These reveal the roles of the investors preferences as well as the market and cost dynamics, and also lead to a fully dynamic model for the implied trading volume. In frictionless models that can be solved in closed form, explicit formulas for the leading-order corrections due to small transaction costs are obtained.
We consider conditional-mean hedging in a fractional Black-Scholes pricing model in the presence of proportional transaction costs. We develop an explicit formula for the conditional-mean hedging portfolio in terms of the recently discovered explicit conditional law of the fractional Brownian motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا