ﻻ يوجد ملخص باللغة العربية
We consider the problem of option hedging in a market with proportional transaction costs. Since super-replication is very costly in such markets, we replace perfect hedging with an expected loss constraint. Asymptotic analysis for small transactions is used to obtain a tractable model. A general expansion theory is developed using the dynamic programming approach. Explicit formulae are also obtained in the special cases of an exponential or power loss function. As a corollary, we retrieve the asymptotics for the exponential utility indifference price.
An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w
We consider an investor with constant absolute risk aversion who trades a risky asset with general Ito dynamics, in the presence of small proportional transaction costs. Kallsen and Muhle-Karbe (2012) formally derived the leading-order optimal tradin
We study superhedging of contingent claims with physical delivery in a discrete-time market model with convex transaction costs. Our model extends Kabanovs currency market model by allowing for nonlinear illiquidity effects. We show that an appropria
We investigate the general structure of optimal investment and consumption with small proportional transaction costs. For a safe asset and a risky asset with general continuous dynamics, traded with random and time-varying but small transaction costs
We consider conditional-mean hedging in a fractional Black-Scholes pricing model in the presence of proportional transaction costs. We develop an explicit formula for the conditional-mean hedging portfolio in terms of the recently discovered explicit