ﻻ يوجد ملخص باللغة العربية
Spin transport electronics - spintronics - focuses on utilizing electron spin as a state variable for quantum and classical information processing and storage. Some insulating materials, such as diamond, offer defect centers whose associated spins are well-isolated from their environment giving them long coherence times; however, spin interactions are important for transport, entanglement, and read-out. Here, we report direct measurement of pure spin transport - free of any charge motion - within a nanoscale quasi 1D spin wire, and find a spin diffusion length ~ 700 nm. We exploit the statistical fluctuations of a small number of spins ($sqrt{N}$ < 100 net spins) which are in thermal equilibrium and have no imposed polarization gradient. The spin transport proceeds by means of magnetic dipole interactions that induce flip-flop transitions, a mechanism that can enable highly efficient, even reversible, pure spin currents. To further study the dynamics within the spin wire, we implement a magnetic resonance protocol that improves spatial resolution and provides nanoscale spectroscopic information which confirms the observed spin transport. This spectroscopic tool opens a potential route for spatially encoding spin information in long-lived nuclear spin states. Our measurements probe intrinsic spin dynamics at the nanometre scale, providing detailed insight needed for practical devices which seek to control spin.
Using four-terminal nonlocal magnetoresistance measurements in lateral spin-valve devices with Si$_{rm 0.1}$Ge$_{rm 0.9}$, we study pure spin current transport in a degenerate SiGe alloy ($n sim$ 5.0 $times$ 10$^{18}$ cm$^{-3}$). Clear nonlocal spin-
Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of spintronics or s
We study the flow of a pure spin current through zinc oxide by measuring the spin Hall magnetoresistance (SMR) in thin film trilayer samples consisting of bismuth-substituted yttrium iron garnet (Bi:YIG), gallium-doped zinc oxide (Ga:ZnO), and platin
Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which conf
We have observed millisecond-long coherent evolution of nuclear spins in a quantum wire at 1.2 K. Local, all-electrical manipulation of nuclear spins is achieved by dynamic nuclear polarization in the breakdown regime of the Integer Quantum Hall Effe