ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear spin coherence in a quantum wire

88   0   0.0 ( 0 )
 نشر من قبل Antonio Corcoles
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed millisecond-long coherent evolution of nuclear spins in a quantum wire at 1.2 K. Local, all-electrical manipulation of nuclear spins is achieved by dynamic nuclear polarization in the breakdown regime of the Integer Quantum Hall Effect combined with pulsed Nuclear Magnetic Resonance. The excitation thresholds for the breakdown are significantly smaller than what would be expected for our sample and the direction of the nuclear polarization can be controlled by the voltage bias. As a four-level spin system, the device is equivalent to two qubits.

قيم البحث

اقرأ أيضاً

Electron transport in a new low-dimensional structure - the nuclear spin polarization induced quantum wire (NSPI QW) is theoretically studied. In the proposed system the local nuclear spin polarization creates the effective hyperfine field which conf ines the electrons with the spins opposite to the hyperfine field to the regions of maximal nuclear spin polarization. The influence of the nuclear spin relaxation and diffusion on the electron energy spectrum and on the conductance of the quantum wire is calculated and the experimental feasibility is discussed.
We study the shot noise (nonequilibrium current fluctuation) associated with dynamic nuclear polarization in a nonequilibrium quantum wire (QW) fabricated in a two-dimensional electron gas. We observe that the spin-polarized conductance quantization of the QW in the integer quantum Hall regime collapses when the QW is voltage biased to be driven to nonequilibrium. By measuring the shot noise, we prove that the spin polarization of electrons in the QW is reduced to $sim 0.7$ instead of unity as a result of electron-nuclear spin-flip scattering. The result is supported by Knight shift measurements of the QW using resistively detected NMR.
We study the effect of bias voltage on the nuclear spin polarization of a ballistic wire, which contains electrons and nuclei interacting via hyperfine interaction. In equilibrium, the localized nuclear spins are helically polarized due to the electr on-mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Focusing here on non-equilibrium, we find that an applied bias voltage induces a uniform polarization, from both helically polarized and unpolarized spins available for spin flips. Once a macroscopic uniform polarization in the nuclei is established, the nuclear spin helix rotates with frequency proportional to the uniform polarization. The uniform nuclear spin polarization monotonically increases as a function of both voltage and temperature, reflecting a thermal activation behavior. Our predictions offer specific ways to test experimentally the presence of a nuclear spin helix polarization in semiconducting quantum wires.
Understanding the flow of spins in magnetic layered structures has enabled an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of spintronics or s pin-based electronics is moving beyond effects based on local spin polarisation and is turning its attention to spin-orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device. While SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques. Here we present the first observation of a predicted spin-orbit gap in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily-measured linear conductance of the system.
The combined presence of a Rashba and a Zeeman effect in a ballistic one-dimensional conductor generates a spin pseudogap and the possibility to propagate a beam with well defined spin orientation. Without interactions transmission through a barrier gives a relatively well polarized beam. Using renormalization group arguments, we examine how electron-electron interactions may affect the transmission coefficient and the polarization of the outgoing beam.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا