ترغب بنشر مسار تعليمي؟ اضغط هنا

Three and four-body systems in one dimension: integrability, superintegrability and discrete symmetries

129   0   0.0 ( 0 )
 نشر من قبل Giovanni Rastelli
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Families of three-body Hamiltonian systems in one dimension have been recently proved to be maximally superintegrable by interpreting them as one-body systems in the three-dimensional Euclidean space, examples are the Calogero, Wolfes and Tramblay Turbiner Winternitz systems. For some of these systems, we show in a new way how the superintegrability is associated with their dihedral symmetry in the three-dimensional space, the order of the dihedral symmetries being associated with the degree of the polynomial in the momenta first integrals. As a generalization, we introduce the analysis of integrability and superintegrability of four-body systems in one dimension by interpreting them as one-body systems with the symmetries of the Platonic polyhedra in the four-dimensional Euclidean space. The paper is intended as a short review of recent results in the sector, emphasizing the relevance of discrete symmetries for the superintegrability of the systems considered.



قيم البحث

اقرأ أيضاً

In this contribution, we discuss three situations in which complete integrability of a three dimensional classical system and its quantum version can be achieved under some conditions. The former is a system with axial symmetry. In the second, we dis cuss a three dimensional system without spatial symmetry which admits separation of variables if we use ellipsoidal coordinates. In both cases, and as a condition for integrability, certain conditions arise in the integrals of motion. Finally, we study integrability in the three dimensional sphere and a particular case associated with the Kepler problem in $S^3$.
Traditional anyons in two dimensions have generalized exchange statistics governed by the braid group. By analyzing the topology of configuration space, we discover that an alternate generalization of the symmetric group governs particle exchanges wh en there are hard-core three-body interactions in one-dimension. We call this new exchange symmetry the traid group and demonstrate that it has abelian and non-abelian representations that are neither bosonic nor fermionic, and which also transform differently under particle exchanges than braid group anyons. We show that generalized exchange statistics occur because, like hard-core two-body interactions in two dimensions, hard-core three-body interactions in one dimension create defects with co-dimension two that make configuration space no longer simply-connected. Ultracold atoms in effectively one-dimensional optical traps provide a possible implementation for this alternate manifestation of anyonic physics.
We study four particular 3-dimensional natural Hamiltonian systems defined in conformally Euclidean spaces. We prove their superintegrability and we obtain, in the four cases, the maximal number of functionally independent integrals of motion. The tw o first systems are related to the 3-dimensional isotropic oscillator and the superintegrability is quadratic. The third system is obtained as a continuous deformation of an oscillator with ratio of frequencies 1:1:2 and with three additional nonlinear terms of the form $k_2/x^2$, $k_3/y^2$ and $k_4/z^2$, and the fourth system is obtained as a deformation of the Kepler Hamiltonian also with these three particular nonlinear terms. These third and fourth systems are superintegrable but with higher-order constants of motion. The four systems depend on a real parameter in such a way that they are continuous functions of the parameter (in a certain domain of the parameter) and in the limit of such parameter going to zero the Euclidean dynamics is recovered.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, f or any Lagrangian system with $m$ commuting variational symmetries, one can construct a pluri-Lagrangian 1-form in the $(m+1)$-dimensional time, whose multi-time Euler-Lagrange equations coincide with the original system supplied with $m$ commuting evolutionary flows corresponding to the variational symmetries. We also give a Hamiltonian counterpart of this construction, leading, for any system of commuting Hamiltonian flows, to a pluri-Lagrangian 1-form with coefficients depending on functions in the phase space.
49 - Eric Foxall , Hanbaek Lyu 2017
We study the $kappa$-color cyclic particle system on the one-dimensional integer lattice $mathbb{Z}$, first introduced by Bramson and Griffeath in cite{bramson1989flux}. In that paper they show that almost surely, every site changes its color infinit ely often if $kappain {3,4}$ and only finitely many times if $kappage 5$. In addition, they conjecture that for $kappain {3,4}$ the system clusters, that is, for any pair of sites $x,y$, with probability tending to 1 as $ttoinfty$, $x$ and $y$ have the same color at time $t$. Here we prove that conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا