ﻻ يوجد ملخص باللغة العربية
We present a fully conservative, skew-symmetric finite difference scheme on transformed grids. The skew-symmetry preserves the kinetic energy by first principles, simultaneously avoiding a central instability mechanism and numerical damping. In contrast to other skew-symmetric schemes no special averaging procedures are needed. Instead, the scheme builds purely on point-wise operations and derivatives. Any explicit and central derivative can be used, permitting high order and great freedom to optimize the scheme otherwise. This also allows the simple adaption of existing finite difference schemes to improve their stability and damping properties.
In this paper we present a fourth-order in space and time block-structured adaptive mesh refinement algorithm for the compressible multicomponent reacting Navier-Stokes equations. The algorithm uses a finite volume approach that incorporates a fourth
The hydrostatic equilibrium state is the consequence of the exact hydrostatic balance between hydrostatic pressure and external force. Standard finite volume or finite difference schemes cannot keep this balance exactly due to their unbalanced trunca
A computational technique has been developed to perform compressible flow simulations involving moving boundaries using an embedded boundary approach within the block-structured adaptive mesh refinement framework of AMReX. A conservative, unsplit, cu
A simple scheme for incompressible, constant density flows is presented, which avoids odd-even decoupling for the Laplacian on a collocated grids. Energy stability is implied by maintaining strict energy conservation. Momentum is conserved. Arbitrary
A dynamic procedure for the Lagrangian Averaged Navier-Stokes-$alpha$ (LANS-$alpha$) equations is developed where the variation in the parameter $alpha$ in the direction of anisotropy is determined in a self-consistent way from data contained in the