ﻻ يوجد ملخص باللغة العربية
A computational technique has been developed to perform compressible flow simulations involving moving boundaries using an embedded boundary approach within the block-structured adaptive mesh refinement framework of AMReX. A conservative, unsplit, cut-cell approach is utilized and a ghost-cell approach is developed for computing the flux on the moving, embedded boundary faces. Various test cases are performed to validate the method, and compared with analytical, experimental, and other numerical results in literature. Inviscid and viscous test cases are performed that span a wide regime of flow speeds $-$ acoustic (harmonically pulsating sphere), smooth flows (expansion fan created by a receding piston) and flows with shocks (shock-cylinder interaction, shock-wedge interaction, pitching NACA 0012 airfoil and shock-cone interaction). A closed system with moving boundaries $-$ an oscillating piston in a cylinder, showed that the percentage error in mass within the system decreases with refinement, demonstrating the conservative nature of the moving boundary algorithm. Viscous test cases involve that of a horizontally moving cylinder at $Re=40$, an inline oscillating cylinder at $Re=100$, and a transversely oscillating cylinder at $Re=185$. The judicious use of adaptive mesh refinement with appropriate refinement criteria to capture the regions of interest leads to well-resolved flow features, and good quantitative comparison is observed with the results available in literature.
In this paper we present a fourth-order in space and time block-structured adaptive mesh refinement algorithm for the compressible multicomponent reacting Navier-Stokes equations. The algorithm uses a finite volume approach that incorporates a fourth
We present a fully conservative, skew-symmetric finite difference scheme on transformed grids. The skew-symmetry preserves the kinetic energy by first principles, simultaneously avoiding a central instability mechanism and numerical damping. In contr
The hydrostatic equilibrium state is the consequence of the exact hydrostatic balance between hydrostatic pressure and external force. Standard finite volume or finite difference schemes cannot keep this balance exactly due to their unbalanced trunca
This paper has been withdrawn by the authors for adding some results.
A dynamic procedure for the Lagrangian Averaged Navier-Stokes-$alpha$ (LANS-$alpha$) equations is developed where the variation in the parameter $alpha$ in the direction of anisotropy is determined in a self-consistent way from data contained in the