ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of multi-electronic states on few-quantum-dot nanolasers

63   0   0.0 ( 0 )
 نشر من قبل S{\\o}ren Stobbe
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental and theoretical study on the gain mechanism in a photonic-crystal-cavity nanolaser with embedded quantum dots. From time-resolved measurements at low excitation power we find that four excitons are coupled to the cavity. At high excitation power we observe a smooth low-threshold transition from spontaneous emission to lasing. Before lasing emission sets in, however, the excitons are observed to saturate, and the gain required for lasing originates rather from multi-electronic transitions, which give rise to a broad emission background. We compare the experiment to a model of quantum-dot microcavity lasers and find that the number of emitters feeding the cavity must greatly exceed four, which confirms that the gain is provided by multi-electronic states. Our results are consistent with theoretical predictions.

قيم البحث

اقرأ أيضاً

We investigate coherent time-evolution of charge states (pseudo-spin qubit) in a semiconductor double quantum dot. This fully-tunable qubit is manipulated with a high-speed voltage pulse that controls the energy and decoherence of the system. Coheren t oscillations of the qubit are observed for several combinations of many-body ground and excited states of the quantum dots. Possible decoherence mechanisms in the present device are also discussed.
We employ detuning-dependent decay-rate measurements of a quantum dot in a photonic-crystal cavity to study the influence of phonon dephasing in a solid-state quantum-electrodynamics experiment. The experimental data agree with a microscopic non-Mark ovian model accounting for dephasing from longitudinal acoustic phonons, and identifies the reason for the hitherto unexplained difference between non-resonant cavity feeding in different nanocavities. From the comparison between experiment and theory we extract the effective phonon density of states experienced by the quantum dot. This quantity determines all phonon dephasing properties of the system and is found to be described well by a theory of bulk phonons.
80 - I. Tifrea , G. Pal , 2011
We developed a set of equations to calculate the electronic Greens functions in a T-shaped multi-quantum dot system using the equation of motion method. We model the system using a generalized Anderson Hamiltonian which accounts for {em finite} intra dot on-site Coulomb interaction in all component dots as well as for the interdot electron tunneling between adjacent quantum dots. Our results are obtained within and beyond the Hartree-Fock approximation and provide a path to evaluate all the electronic correlations in the multi-quantum dot system in the Coulomb blockade regime. Both approximations provide information on the physical effects related to the finite intradot on-site Coulomb interaction. As a particular example for our generalized results, we considered the simplest T-shaped system consisting of two dots and proved that our approximation introduces important corrections in the detector and side dots Greens functions, and implicitly in the evaluation of the systems transport properties. The multi-quantum dot T-shaped setup may be of interest for the practical realization of qubit states in quantum dots systems.
77 - L. Gaudreau , A. Kam , G. Granger 2009
In this paper we report on a tuneable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is im portant as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by novel charge transfer behaviour.
129 - M. C. Rogge , B. Harke , C. Fricke 2005
With non-invasive methods, we investigate ground and excited states of a lateral quantum dot. Charge detection via a quantum point contact is used to map the dot dynamics in a regime where the current through the dot is too low for transport measurem ents. In this way we investigate and compare the tunneling rates from the dot to source and drain. We find a symmetry line on which the tunneling rates to both leads are equal. In this situation ground states as well as excited states influence the mean charge of the dot. A detailed study in this regime reveals that the coupling symmetry depends on the number of states contributing to transport and on the spatial distribution of individual states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا