ﻻ يوجد ملخص باللغة العربية
We developed a set of equations to calculate the electronic Greens functions in a T-shaped multi-quantum dot system using the equation of motion method. We model the system using a generalized Anderson Hamiltonian which accounts for {em finite} intradot on-site Coulomb interaction in all component dots as well as for the interdot electron tunneling between adjacent quantum dots. Our results are obtained within and beyond the Hartree-Fock approximation and provide a path to evaluate all the electronic correlations in the multi-quantum dot system in the Coulomb blockade regime. Both approximations provide information on the physical effects related to the finite intradot on-site Coulomb interaction. As a particular example for our generalized results, we considered the simplest T-shaped system consisting of two dots and proved that our approximation introduces important corrections in the detector and side dots Greens functions, and implicitly in the evaluation of the systems transport properties. The multi-quantum dot T-shaped setup may be of interest for the practical realization of qubit states in quantum dots systems.
We propose to continuously monitor a charge qubit by utilizing a T-shaped double quantum dot detector, in which the qubit and double dot are arranged in such a unique way that the detector turns out to be particularly susceptible to the charge states
We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The systems electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient
Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected wi
We theoretically investigate the Kondo effect of a T-shaped triple-quantum-dot structure, by means of the numerical renormalization group method. It is found that at the point of electron-hole symmetry, the systems entropy has opportunities to exhibi
Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The top