ﻻ يوجد ملخص باللغة العربية
With non-invasive methods, we investigate ground and excited states of a lateral quantum dot. Charge detection via a quantum point contact is used to map the dot dynamics in a regime where the current through the dot is too low for transport measurements. In this way we investigate and compare the tunneling rates from the dot to source and drain. We find a symmetry line on which the tunneling rates to both leads are equal. In this situation ground states as well as excited states influence the mean charge of the dot. A detailed study in this regime reveals that the coupling symmetry depends on the number of states contributing to transport and on the spatial distribution of individual states.
Exciton levels and fine-structure splitting in laterally-coupled quantum dot molecules are studied. The electron and hole tunneling energies as well as the direct Coulomb interaction are essential for the exciton levels. It is found that fine-structu
Among the different platforms for quantum information processing, individual electron spins in semiconductor quantum dots stand out for their long coherence times and potential for scalable fabrication. The past years have witnessed substantial progr
We consider a square lattice configuration of circular gate-defined quantum dots in an unbiased graphene sheet and calculate the electronic, particularly spectral properties of finite albeit actual sample sized systems by means of a numerically exact
We systematically study the coupling of longitudinal modes (shells) in a carbon nanotube quantum dot. Inelastic cotunneling spectroscopy is used to probe the excitation spectrum in parallel, perpendicular and rotating magnetic fields. The data is com
Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly