ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting fiber with transition temperature up to 7.43 K in Nb2PdxS5-delta (0< x <0.6)

48   0   0.0 ( 0 )
 نشر من قبل Changjin Zhang
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wiring systems powered by high-efficient superconductors have long been a dream of scientists, but researchers have faced practical challenges such as finding flexible materials. Here we report superconductivity in Nb2PdxS5-delta fibers with transition temperature up to 7.43 K, which have typical diameters of 0.3-3 micrometer. Superconductivity occurs in a wide range of Pd and S contents, suggesting that the superconductivity in this system is very robust. Long fibers with suitable size provide a new route to high-power transmission cables and electronic devices.

قيم البحث

اقرأ أيضاً

268 - A. Yamamoto , C. Takao , T. Masui 2002
Superconductivity with Tc above 9 K was found in metal-deficient NbB2 prepared under 5 GPa, while no clear superconductivity was observed down to 3 K in stoichiometric NbB2. The superconductivity was observed above x = 0.04 in Nb1-xB2. and the lattic e parameters also changed abruptly at x = 0.04. As x increased, the transition temperature Tc slightly rose and fell with the maximum value of 9.2 K at x = 0.24 for the samples sintered at 5 GPa and 1200 C. The Tc-value changed in the range from 7 K to 9 K, depending on the sintering pressure. A series of Ta1-xB2 (0 =< x =< 0.24) was also synthesized under high pressure to examine a special effect of high-pressure synthesis.
We report on the magnetic penetration depth, lambda, in a type II superconductor NbB_{2+x} determined by muon spin rotation method. We show in the sample with x=0.1 that lambda at 2.0 K is independent of an applied magnetic field. This suggests that the superconducting order parameter in NbB_{2+x} is isotropic, as expected for conventional BCS superconductors. Meanwhile, the superconducting carrier density (proportional to lambda^{-2}) exhibits an interesting tendency of increase with increasing T_c (where T_c varies with x). Possible origin of such behavior is discussed in comparison with the case of exotic superconductors.
113 - Yazhou Zhou , Jing Guo , Shu Cai 2020
Copper oxide superconductors have continually fascinated the communities of condensed matter physics and material sciences because they host the highest ambient-pressure superconducting transition temperature (Tc) and mysterious physics. Searching fo r the universal correlation between the superconducting state and its normal state or neighboring ground state is believed to be an effective way for finding clues to elucidate the underlying mechanism of the superconductivity. One of the common pictures for the copper oxide superconductors is that a well-behaved metallic phase will present after the superconductivity is entirely suppressed by chemical doping or application of the magnetic field. Here, we report a different observation of universal quantum transition from superconducting state to insulating-like state under pressure in the under-, optimally- and over-doped Bi2212 superconductors with two CuO2 planes in a unit cell. The same phenomenon has been also found in the Bi2201 superconductor with one CuO2 plane and the Bi2223 superconductor with three CuO2 planes in a unit cell. These results not only provide fresh information but also pose a new challenge for achieving a unified understanding on the underlying physics of the high-Tc superconductivity.
We show that electroplated Re films in multilayers with noble metals such as Cu, Au, and Pd have an enhanced superconducting critical temperature relative to previous methods of preparing Re. The dc resistance and magnetic susceptibility indicate a c ritical temperature of approximately 6 K. Magnetic response as a function of field at 1.8 K demonstrates type-II superconductivity, with an upper critical field on the order of 2.5 T. Critical current densities greater than 10^7 A/m^2 were measured above liquid-helium temperature. Low-loss at radio frequency was obtained below the critical temperature for multilayers deposited onto resonators made with Cu traces on commercial circuit boards. These electroplated superconducting films can be integrated into a wide range of standard components for low-temperature electronics.
118 - J. Yang , T. Oka , Z. Li 2017
We report $^{75}$As nuclear magnetic resonance (NMR) / nuclear quadrupole resonance (NQR) and transmission electron microscopy (TEM) studies on LaFeAsO$_{1-x}$F$_{x}$. There are two superconducting domes in this material. The first one appears at 0.0 3 $leq$ $x$ $leq$ 0.2 with $T_{rm c}$$^{max}$ = 27 K, and the second one at 0.25 $leq$ $x$ $leq$ 0.75 with $T_{rm c}$$^{max}$ = 30 K. By NMR and TEM, we demonstrate that a $C4$-to-$C2$ structural phase transition (SPT) takes place above both domes, with the transition temperature $T_{rm s}$ varying strongly with $x$. In the first dome, the SPT is followed by an antiferromagnetic (AF) transition, but neither AF order nor low-energy spin fluctuations are found in the second dome. In LaFeAsO$_{0.97}$F$_{0.03}$, we find that AF order and superconductivity coexist microscopically via $^{75}$As nuclear spin-lattice relaxation rate (1/$T_1$) measurements. In the coexisting region, 1/$T_1$ decreases at $T_{rm c}$ but becomes to be proportional to $T$ below 0.6$T_{rm c}$, indicating gapless excitations. Therefore, in contrast to the early reports, the obtained phase diagram for $x leq$ 0.2 is quite similar to the doped BaFe$_{2}$As$_{2}$ system. The electrical resistivity in the second dome can be fitted by $rho = {{rho }_{0}}+A{{T}^{n}}$ with $n$ = 1 and a maximal coefficient $A$ at around $x_{opt}$ = 0.5$sim$0.55 where $T_{rm s}$ extrapolates to zero and $T_{rm c}$ is the maximal, which suggest the importance of quantum critical fluctuations associated with the SPT. We have constructed a complete phase diagram of LaFeAsO$_{1-x}$F$_{x}$, which provides insight into the relationship between SPT, antiferromagnetism and superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا