ترغب بنشر مسار تعليمي؟ اضغط هنا

High-pressure synthesis of superconducting Nb{1-x}B2 (x = 0-0.48) with the maximum Tc = 9.2 K

269   0   0.0 ( 0 )
 نشر من قبل Ayako Yamamoto
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity with Tc above 9 K was found in metal-deficient NbB2 prepared under 5 GPa, while no clear superconductivity was observed down to 3 K in stoichiometric NbB2. The superconductivity was observed above x = 0.04 in Nb1-xB2. and the lattice parameters also changed abruptly at x = 0.04. As x increased, the transition temperature Tc slightly rose and fell with the maximum value of 9.2 K at x = 0.24 for the samples sintered at 5 GPa and 1200 C. The Tc-value changed in the range from 7 K to 9 K, depending on the sintering pressure. A series of Ta1-xB2 (0 =< x =< 0.24) was also synthesized under high pressure to examine a special effect of high-pressure synthesis.



قيم البحث

اقرأ أيضاً

122 - Z.A. Ren , G.C. Che , Y.M. Ni 2003
In this paper, the $Fe$-containing superconductors $Fe_{0.5}Cu_{0.5}Ba_2YCu_2O_{7+delta}$, $Fe_{0.5}Cu_{0.5}BaSrYCu_2O_{7+delta}$ and $Fe_{0.5}Cu_{0.5}Sr_2YCu_2O_{7+delta}$ were successfully prepared by common solid-state reaction followed with a pro cedure of high pressure synthesis. The structural change and superconducting properties in $(Fe_xCu_{1-x})BaSrYCu_2O_{7+delta}$ ($x$ = 0 $sim$ 1.0) systems were also investigated. Annealing experiments indicate that the occurrence of superconductivity in $Fe_{0.5}Cu_{0.5}(Ba_{1-x}Sr_{x})_2YCu_2O_{7+delta}$ ($x$ = 0, 0.5 and 1) systems is mainly induced by the procedure of high pressure synthesis, which causes the increase of oxygen content and the redistribution of $Fe$ atoms between $Cu(1)$ and $Cu(2)$ sites, but not from possible secondary phase of $YBa_2Cu_3O_{7-delta}$, $YBaSrCu_3O_{7-delta}$ or $YSr_2Cu_3O_{7-delta}$ superconductors.
The effect of hydrostatic pressure and partial Na substitution on the normal-state properties and the superconducting transition temperature ($T_c$) of K$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals were investigated. It was found that a partial Na subs titution leads to a deviation from the standard $T^2$ Fermi-liquid behavior in the temperature dependence of the normal-state resistivity. It was demonstrated that non-Fermi liquid like behavior of the resistivity for K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ and some KFe$_2$As$_2$ samples can be explained by disorder effect in the multiband system with rather different quasiparticle effective masses. Concerning the superconducting state our data support the presence of a shallow minimum around 2 GPa in the pressure dependence of $T_c$ for stoichiometric KFe$_2$As$_2$. The analysis of $T_c$ in the K$_{1-x}$Na$_{x}$Fe$_2$As$_2$ at pressures below 1.5 GPa showed, that the reduction of $T_c$ with Na substitution follows the Abrikosov-Gorkov law with the critical temperature $T_{c0}$ of the clean system (without pair-breaking) which linearly depends on the pressure. Our observations, also, suggest that $T_c$ of K$_{1-x}$Na$_x$Fe$_2$As$_2$ is nearly independent of the lattice compression produced by the Na substitution. Further, we theoretically analyzed the behavior of the band structure under pressure within the generalized gradient approximation (GGA). A qualitative agreement between the calculated and the recently in de Haas-van Alphen experiments [T. Terashima et al., Phys.Rev.B89, 134520(2014)] measured pressure dependencies of the Fermi-surface cross-sections has been found. These calculations, also, indicate that the observed minimum around 2~GPa in the pressure dependence of $T_c$ may occur without a change of the pairing symmetry.
We present the first study of thermal conductivity in superconducting SrTi$_{1-x}$Nb$_{x}$O$_{3}$, sufficiently doped to be near its maximum critical temperature. The bulk critical temperature, determined by the jump in specific heat, occurs at a sig nificantly lower temperature than the resistive T$_{c}$. Thermal conductivity, dominated by the electron contribution, deviates from its normal-state magnitude at bulk T$_{c}$, following a Bardeen-Rickayzen-Tewordt (BRT) behavior, expected for thermal transport by Bogoliubov excitations. Absence of a T-linear term at very low temperatures rules out the presence of nodal quasi-particles. On the other hand, the field dependence of thermal conductivity points to the existence of at least two distinct superconducting gaps. We conclude that optimally-doped strontium titanate is a multigap nodeless superconductor.
We have synthesized the single-phase polycrystalline samples of Sn1-xAgxTe, Ag-doped topological crystalline insulator SnTe, with a range of x = 0-0.5 using a high-pressure synthesis method. The crystal structure of Sn1-xAgxTe at room temperature is a cubic NaCl-type structure, which does not vary upon Ag substitution. Bulk superconductivity with a transition temperature of 2.4 K was observed for x = 0.15-0.25, and the optimal Ag content was x = 0.2. The Sn1-xAgxTe superconducting phase will be useful for understanding the superconductivity nature and mechanisms of the carrier-doped SnTe system.
100 - W. Lu , J. Yang , X.L. Dong 2008
Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا