ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximations of potentials through the truncation of their inverses

46   0   0.0 ( 0 )
 نشر من قبل Zoltan Papp
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The inverse of an $infty times infty$ symmetric band matrix can be constructed in terms of a matrix continued fraction. For Hamiltonians with Coulomb plus polynomial potentials, this results in an exact and analytic Greens operator which, even in finite-dimensional representation, exhibits the exact spectrum. In this work we propose a finite dimensional representation for the potential operator such that it retains some information about the whole Hilbert-space representation. The potential should be represented in a larger basis, then the matrix should be inverted, then truncated to the desired size, and finally inverted again. This procedure results in a superb low-rank representation of the potential operator. The method is illustrated with a typical nucleon-nucleon potential.

قيم البحث

اقرأ أيضاً

Prima facie the systematic implementation of corrections to the rainbow-ladder truncation of QCDs Dyson-Schwinger equations will uniformly reduce in magnitude those calculated mass-dimensioned results for pseudoscalar and vector meson properties that are not tightly constrained by symmetries. The aim and interpretation of studies employing rainbow-ladder truncation are reconsidered in this light.
64 - W. Schadow , W. Sandhas 1997
The process $gamma + t to n + d$ is treated by means of three-body integral equations employing in their kernel the W-Matrix representation of the subsystem amplitudes. As compared to the plane wave (Born) approximation the full solution of the integ ral equations, which takes into account the final state interaction, shows at low energies a 24% enhancement. The calculations are based on the semirealistic Malfliet-Tjon and the realistic Paris and Bonn B potentials. For comparison with earlier calculations we also present results for the Yamaguchi potential. In the low-energy region a remarkable potential dependence is observed, which vanishes at higher energies.
60 - T. Banks 2020
We reanalyze and expand upon models proposed in 2015 for linear dilaton black holes, and use them to test several speculative ideas about black hole physics. We examine ideas based on the definition of quantum extremal surfaces in quantum field theor y in curved space-time. The low energy effective field theory of our model is the large N CGHS model, which includes the one loop effects that are taken into account in the island proposal for understanding the Page curve. Contrary to the results of the island analysis, that solution leads to a singular geometry for the evaporated black hole. If the singularity obeys Cosmic Censorship then Hawking evaporation leaves behind a remnant object with a finite fraction of the black hole entropy. If the singularity becomes naked at some point, boundary conditions on a time-like line emanating from that point can produce a sensible model where we expect a Page curve. We show that the fully UV complete model gives a correct Page curve, as it must since the model is manifestly unitary. Recent result on replicawormholes suggest that the island formula, which appears to involve only one loop computations, in fact encodes non-perturbative contributions to the gravitational path integral. The question of why Euclidean gravity computations can capture information about microscopic states of quantum gravity remains mysterious. In a speculative coda to the paper we suggest that the proper way of understanding the relation between Euclidean gravity path integrals and quantum spectra is via a statistical approach to Jacobsons interpretation of general relativistic field equations as the hydrodynamic equations of the area law for the maximal entropy of causal diamonds.
We solve the Minkowski-space Schwinger-Dyson equation (SDE) for the fermion propagator in quantum electrodynamics (QED) with massive photons. Specifically, we work in the quenched approximation within the rainbow-ladder truncation. Loop-divergences a re regularized by the Pauli-Villars regularization. With moderately strong fermion-photon coupling, we find that the analytic structure of the fermion propagator consists of an on-shell pole and branch-cuts located in the timelike region. Such structures are consistent with the direct solution of the fermion propagator as functions of the complex momentum. Our method paves the way towards the calculation of the Minkowski-space Bethe-Salpeter amplitude using dressed fermion propagator.
101 - Omar Benhar 2019
The scale-dependence of the nucleon-nucleon interaction, which in recent years has been extensively analysed within the context of chiral effective field theory, is, in fact, inherent in any potential models constrained by a fit to scattering data. A comparison between a purely phenomenological potential and local interactions derived from chiral effective field theory suggests that--thanks to the ability to describe nucleon-nucleon scattering at higher energies, as well as the deuteron momentum distribution extracted from electro-disintegration data--phenomenological potentials are best suited for the description of nuclear dynamics at the scale relevant to neutron star matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا