ﻻ يوجد ملخص باللغة العربية
The scale-dependence of the nucleon-nucleon interaction, which in recent years has been extensively analysed within the context of chiral effective field theory, is, in fact, inherent in any potential models constrained by a fit to scattering data. A comparison between a purely phenomenological potential and local interactions derived from chiral effective field theory suggests that--thanks to the ability to describe nucleon-nucleon scattering at higher energies, as well as the deuteron momentum distribution extracted from electro-disintegration data--phenomenological potentials are best suited for the description of nuclear dynamics at the scale relevant to neutron star matter.
Recently a new approach to calculate the nuclear potential from lattice QCD has been proposed. In the approach the nuclear potential is constructed from Bethe-Salpeter (BS) wave functons through the Schroedinger equation. The procedure leads to non-l
Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied in the last years, a consistent description, i.e. starting from microscopic two- and many-body fo
We closely investigate NN potentials based upon the Delta-full version of chiral effective field theory. We find that recently constructed NN potentials of this kind, which (when applied together with three-nucleon forces) were presented as predictin
A linear correlation is found between the magnitude of nucleon-nucleon short-range correlations and the nuclear binding energy per nucleon with pairing energy removed. By using this relation, the strengths of nucleon-nucleon short-range correlations
The potentials $V (v)$ in the nonrelativistic (relativistic) nucleon-nucleon (NN) Schroedingerequation are related by a quadratic equation. That equation is numerically solved, thus providing phase equivalent v- potentials related for instance to the