ﻻ يوجد ملخص باللغة العربية
Given two pairs of quantum states, a fundamental question in the resource theory of asymmetric distinguishability is to determine whether there exists a quantum channel converting one pair to the other. In this work, we reframe this question in such a way that a catalyst can be used to help perform the transformation, with the only constraint on the catalyst being that its reduced state is returned unchanged, so that it can be used again to assist a future transformation. What we find here, for the special case in which the states in a given pair are commuting, and thus quasi-classical, is that this catalytic transformation can be performed if and only if the relative entropy of one pair of states is larger than that of the other pair. This result endows the relative entropy with a fundamental operational meaning that goes beyond its traditional interpretation in the setting of independent and identical resources. Our finding thus has an immediate application and interpretation in the resource theory of asymmetric distinguishability, and we expect it to find application in other domains.
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing con
Heisenbergs uncertainty principle has recently led to general measurement uncertainty relations for quantum systems: incompatible observables can be measured jointly or in sequence only with some unavoidable approximation, which can be quantified in
We study quantum dichotomies and the resource theory of asymmetric distinguishability using a generalization of Strassens theorem on preordered semirings. We find that an asymptotic variant of relative submajorization, defined on unnormalized dichoto
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncer
We extend Vedral and Plenios theorem (theorem 3 in Phys. Rev. A 57, 1619) to a more general case, and obtain the relative entropy of entanglement for a class of mixed states, this result can also follow from Rains theorem 9 in Phys. Rev. A 60, 179.