ﻻ يوجد ملخص باللغة العربية
Stochastic stability for centralized time-varying Kalman filtering over a wireles ssensor network with correlated fading channels is studied. On their route to the gateway, sensor packets, possibly aggregated with measurements from several nodes, may be dropped because of fading links. To study this situation, we introduce a network state process, which describes a finite set of configurations of the radio environment. The network state characterizes the channel gain distributions of the links, which are allowed to be correlated between each other. Temporal correlations of channel gains are modeled by allowing the network state process to form a (semi-)Markov chain. We establish sufficient conditions that ensure the Kalman filter to be exponentially bounded. In the one-sensor case, this new stability condition is shown to include previous results obtained in the literature as special cases. The results also hold when using power and bit-rate control policies, where the transmission power and bit-rate of each node are nonlinear mapping of the network state and channel gains.
We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated $M$-state Markov fading channel, where the p
We consider remote state estimation of multiple discrete-time linear time-invariant (LTI) systems over multiple wireless time-varying communication channels. Each system state is measured by a sensor, and the measurements from sensors are sent to a r
In this paper, we consider a networked control system (NCS) in which an dynamic plant system is connected to a controller via a temporally correlated wireless fading channel. We focus on communication power design at the sensor to minimize a weighted
Although state estimation in networked control systems is a fundamental problem, few efforts have been made to study distributed state estimation via multiple access channels (MACs). In this article, we give a characterization of the zero-error capac
Worst-case models of erasure and symmetric channels are investigated, in which the number of channel errors occurring in each sliding window of a given length is bounded. Upper and lower bounds on their zero-error capacities are derived, with the low