ﻻ يوجد ملخص باللغة العربية
We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated $M$-state Markov fading channel, where the packet drop probability is time-varying and depends on the current fading channel state. We establish a necessary and sufficient condition for mean-square stability of the remote estimation error covariance as $rho^2(mathbf{A})rho(mathbf{DM})<1$, where $rho(cdot)$ denotes the spectral radius, $mathbf{A}$ is the state transition matrix of the LTI system, $mathbf{D}$ is a diagonal matrix containing the packet drop probabilities in different channel states, and $mathbf{M}$ is the transition probability matrix of the Markov channel states. To derive this result, we propose a novel estimation-cycle based approach, and provide new element-wise bounds of matrix powers. The stability condition is verified by numerical results, and is shown more effective than existing sufficient conditions in the literature. We observe that the stability region in terms of the packet drop probabilities in different channel states can either be convex or concave depending on the transition probability matrix $mathbf{M}$. Our numerical results suggest that the stability conditions for remote estimation may coincide for setups with a smart sensor and with a conventional one (which sends raw measurements to the remote estimator), though the smart sensor setup achieves a better estimation performance.
We consider remote state estimation of multiple discrete-time linear time-invariant (LTI) systems over multiple wireless time-varying communication channels. Each system state is measured by a sensor, and the measurements from sensors are sent to a r
Stochastic stability for centralized time-varying Kalman filtering over a wireles ssensor network with correlated fading channels is studied. On their route to the gateway, sensor packets, possibly aggregated with measurements from several nodes, may
Although state estimation in networked control systems is a fundamental problem, few efforts have been made to study distributed state estimation via multiple access channels (MACs). In this article, we give a characterization of the zero-error capac
Worst-case models of erasure and symmetric channels are investigated, in which the number of channel errors occurring in each sliding window of a given length is bounded. Upper and lower bounds on their zero-error capacities are derived, with the low
Jointly optimal transmission power control and remote estimation over an infinite horizon is studied. A sensor observes a dynamic process and sends its observations to a remote estimator over a wireless fading channel characterized by a time-homogene