ﻻ يوجد ملخص باللغة العربية
As the first well-documented example of the ferroelectric metal, LiOsO3 has received extensive research attention recently. Using density-functional calculations, we perform a systematic study for LiOsO3. We address the controversy about the depth of the double well in the potential surface, and propose that the ferroelectric transition is order-disorder like. Moreover, we unambiguously demonstrate that the electric screening in this compound is highly anisotropic, and there is still unscreened dipole-dipole interaction in one special direction which results in the long range ferroelectric order despite the metallic nature of LiOsO3.
Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science[1-9]. However, the coexistence of magnetism and conventional ferroelectricity is physically unfavoured[1
Knowledge of the behavior of hydrogen in metal hydrides is the key for understanding their electronic properties. So far, no experimental methods exist to access these properties beyond 100 GPa, where high-Tc superconductivity emerges. Here, we prese
Polar metals characterized by the simultaneous coexistence of ferroelectric distortions and metallicity have attracted tremendous attention. Developing such materials at low dimensions remains challenging since both conducting electrons and reduced d
A class of materials known as ``ferroelectric metals was discussed theoretically by Anderson and Blount in 1965 [Phys. Rev. Lett. 14, 217 (1965)], but to date no examples of this class have been reported. Here we present measurements of the elastic m
The octahedral tilting and ferroelectric-like structural transition of LiOsO3 metallic perovskite [Nature Materials 12, 1024 (2013)] was examined using first-principles density-functional theory. In LiOsO3, a-a-a- octahedral titling mode is responsib