ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices

333   0   0.0 ( 0 )
 نشر من قبل Debbie Leung
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. W. Leung




اسأل ChatGPT حول البحث

The ability to simulate one Hamiltonian with another is an important primitive in quantum information processing. In this paper, a simulation method for arbitrary $sigma_z otimes sigma_z$ interaction based on Hadamard matrices (quant-ph/9904100) is generalized for any pairwise interaction. We describe two applications of the generalized framework. First, we obtain a class of protocols for selecting an arbitrary interaction term in an n-qubit Hamiltonian. This class includes the scheme given in quant-ph/0106064v2. Second, we obtain a class of protocols for inverting an arbitrary, possibly unknown n-qubit Hamiltonian, generalizing the result in quant-ph/0106085v1.



قيم البحث

اقرأ أيضاً

We find an algebraic formula for the N-partite concurrence of N qubits in an X-matrix. X- matricies are density matrices whose only non-zero elements are diagonal or anti-diagonal when written in an orthonormal basis. We use our formula to study the dynamics of the N-partite entanglement of N remote qubits in generalized N-party Greenberger-Horne-Zeilinger (GHZ) states. We study the case when each qubit interacts with a partner harmonic oscillator. It is shown that only one type of GHZ state is prone to entanglement sudden death; for the rest, N-partite entanglement dies out momentarily. Algebraic formulas for the entanglement dynamics are given in both cases.
In the Bloch sphere picture, one finds the coefficients for expanding a single-qubit density operator in terms of the identity and Pauli matrices. A generalization to $n$ qubits via tensor products represents a density operator by a real vector of le ngth $4^n$, conceptually similar to a statevector. Here, we study this approach for the purpose of quantum circuit simulation, including noise processes. The tensor structure leads to computationally efficient algorithms for applying circuit gates and performing few-qubit quantum operations. In view of variational circuit optimization, we study backpropagation through a quantum circuit and gradient computation based on this representation, and generalize our analysis to the Lindblad equation for modeling the (non-unitary) time evolution of a density operator.
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for the expansion of a polynomial in terms of m-polynomials. We conclude this article by an implementation in MATHEMATICA of m-polynomials and the results obtained for them.
A necessary and sufficient condition in order that a (diagonalizable) pseudohermitian operator admits an antilinear symmetry T such that T^{2}=-1 is proven. This result can be used as a quick test on the T-invariance properties of pseudohermitian Ham iltonians, and such test is indeed applied, as an example, to the Mashhoon-Papini Hamiltonian.
Any quantum system with a non-trivial Hamiltonian is able to simulate any other Hamiltonian evolution provided that a sufficiently large group of unitary control operations is available. We show that there exist finite groups with this property and p resent a sufficient condition in terms of group characters. We give examples of such groups in dimension 2 and 3. Furthermore, we show that it is possible to simulate an arbitrary bipartite interaction by a given one using such groups acting locally on the subsystems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا