ﻻ يوجد ملخص باللغة العربية
The ability to simulate one Hamiltonian with another is an important primitive in quantum information processing. In this paper, a simulation method for arbitrary $sigma_z otimes sigma_z$ interaction based on Hadamard matrices (quant-ph/9904100) is generalized for any pairwise interaction. We describe two applications of the generalized framework. First, we obtain a class of protocols for selecting an arbitrary interaction term in an n-qubit Hamiltonian. This class includes the scheme given in quant-ph/0106064v2. Second, we obtain a class of protocols for inverting an arbitrary, possibly unknown n-qubit Hamiltonian, generalizing the result in quant-ph/0106085v1.
We find an algebraic formula for the N-partite concurrence of N qubits in an X-matrix. X- matricies are density matrices whose only non-zero elements are diagonal or anti-diagonal when written in an orthonormal basis. We use our formula to study the
In the Bloch sphere picture, one finds the coefficients for expanding a single-qubit density operator in terms of the identity and Pauli matrices. A generalization to $n$ qubits via tensor products represents a density operator by a real vector of le
We investigate polynomials, called m-polynomials, whose generator polynomial has coefficients that can be arranged as a matrix, where q is a positive integer greater than one. Orthogonality relations are established and coefficients are obtained for
A necessary and sufficient condition in order that a (diagonalizable) pseudohermitian operator admits an antilinear symmetry T such that T^{2}=-1 is proven. This result can be used as a quick test on the T-invariance properties of pseudohermitian Ham
Any quantum system with a non-trivial Hamiltonian is able to simulate any other Hamiltonian evolution provided that a sufficiently large group of unitary control operations is available. We show that there exist finite groups with this property and p