ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Hall magnetoresistance in Pt/YIG bilayers via varying magnon excitation

315   0   0.0 ( 0 )
 نشر من قبل Kangkang Meng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin Hall magnetoresistance (SMR) and magnon excitation magnetoresistance (MMR) that all generate via the spin Hall effect and inverse spin Hall effect in a nonmagnetic material are always related to each other. However, the influence of magnon excitation for SMR is often overlooked due to the negligible MMR. Here, we investigate the SMR in Pt/Y3Fe5O12 (YIG) bilayers from 5 to 300K, in which the YIG are treated after Ar+-ion milling. The SMR in the treated device is smaller than in the non-treated. According to theoretical simulation, we attribute this phenomenon to the reduction of the interfacial spin-mixing conductance at the treated Pt/YIG interface induced by the magnon suppression. Our experimental results point out that the SMR and the MMR are inter-connected, and the former could be modulated via magnon excitation. Our findings provide a new approach for separating and clarifying the underlying mechanisms.


قيم البحث

اقرأ أيضاً

We measure the ordinary and the anomalous Hall effect in a set of yttrium iron garnet$|$platinum (YIG$|$Pt) bilayers via magnetization orientation dependent magnetoresistance experiments. Our data show that the presence of the ferrimagnetic insulator YIG leads to an anomalous Hall like signature in Pt, sensitive to both Pt thickness and temperature. Interpretation of the experimental findings in terms of the spin Hall anomalous Hall effect indicates that the imaginary part of the spin mixing interface conductance $G_{mathrm{i}}$ plays a crucial role in YIG$|$Pt bilayers. In particular, our data suggest a sign change in $G_{mathrm{i}}$ between $10,mathrm{K}$ and $300,mathrm{K}$. Additionally, we report a higher order Hall effect, which appears in thin Pt films on YIG at low temperatures.
We conducted a systematic angular dependence study of nonlinear magnetoresistance in NiFe/Pt bilayers at variable temperature and field using the Wheatstone bridge method. We successfully disentangled magnon magnetoresistance from other types of magn etoresistances based on their different temperature and field dependences. Both the spin Hall/anisotropic and magnon magnetoresistances contain sine phi and sine 3 phi components with phi the angle between current and magnetization, but they exhibit different field and temperature dependence. The competition between different types of magnetoresistances leads to a sign reversal of sine 3 phi component at a specific magnetic field, which was not reported previously. The phenomenological model developed is able to account for the experimental results for both NiFe/Pt and NiFe/Ta samples with different layer thicknesses. Our results demonstrate the importance of disentangling different types of magnetoresistances when characterizing the charge-spin interconversion process in magnetic heterostructures.
We have studied the spin Hall magnetoresistance (SMR), the magnetoresistance within the plane transverse to the current flow, of Pt/Co bilayers. We find that the SMR increases with increasing Co thickness: the effective spin Hall angle for bilayers w ith thick Co exceeds the reported values of Pt when a conventional drift-diffusion model is used. An extended model including spin transport within the Co layer cannot account for the large SMR. To identify its origin, contributions from other sources are studied. For most bilayers, the SMR increases with decreasing temperature and increasing magnetic field, indicating that magnon-related effects in the Co layer play little role. Without the Pt layer, we do not observe the large SMR found for the Pt/Co bilayers with thick Co. Implementing the effect of the so-called interface magnetoresistance and the textured induced anisotropic scattering cannot account for the Co thickness dependent SMR. Since the large SMR is present for W/Co but its magnitude reduces in W/CoFeB, we infer its origin is associated with a particular property of Co.
115 - T. Shang , Q. F. Zhan , H. L. Yang 2016
We investigate the spin-current transport through antiferromagnetic insulator (AFMI) by means of the spin-Hall magnetoressitance (SMR) over a wide temperature range in Pt/NiO/Y$_3$Fe$_5$O$_{12}$ (Pt/NiO/YIG) heterostructures. By inserting the AFMI Ni O layer, the SMR dramatically decreases by decreasing the temperature down to the antiferromagnetically ordered state of NiO, which implies that the AFM order prevents rather than promotes the spin-current transport. On the other hand, the magnetic proximity effect (MPE) on induced Pt moments by YIG, which entangles with the spin-Hall effect (SHE) in Pt, can be efficiently screened, and pure SMR can be derived by insertion of NiO. The dual roles of the NiO insertion including efficiently blocking the MPE and transporting the spin current from Pt to YIG are outstanding compared with other antiferromagnetic (AFM) metal or nonmagnetic metal (NM).
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characte ristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [1]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا