ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic responses of randomly depleted spin ladders

111   0   0.0 ( 0 )
 نشر من قبل Guillaume Roux
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic responses of a spin-1/2 ladder doped with non-magnetic impurities are studied using various methods and including the regime where frustration induces incommensurability. Several improvements are made on the results of the seminal work of Sigrist and Furusaki [J. Phys. Soc. Jpn. 65, 2385 (1996)]. Deviations from the Brillouin magnetic curve due to interactions are also analyzed. First, the magnetic profile around a single impurity and effective interactions between impurities are analyzed within the bond-operator mean-field theory and compared to density-matrix renormalization group calculations. Then, the temperature behavior of the Curie constant is studied in details. At zero-temperature, we give doping-dependent corrections to the results of Sigrist and Furusaki on general bipartite lattice and compute exactly the distribution of ladder cluster due to chain breaking effects. Using exact diagonalization and quantum Monte-Carlo methods on the effective model, the temperature dependence of the Curie constant is compared to a random dimer model and a real-space renormalization group scenario. Next, the low-part of the magnetic curve corresponding to the contribution of impurities is computed using exact diagonalization. The random dimer model is shown to capture the bulk of the curve, accounting for the deviation from the Brillouin response. At zero-temperature, the effective model prediction agrees relatively well with density-matrix renormalization group calculations. Finite-temperature effects are displayed within the effective model and for large depleted ladder models using quantum Monte-Carlo simulations. In all, the effect of incommensurability does not display a strong qualitative effect on both the magnetic susceptibility and the magnetic curve. Consequences for experiments on the BiCu2PO6 compound and other spin-gapped materials are briefly discussed.



قيم البحث

اقرأ أيضاً

We have succeeded in synthesizing two types of new organic radical crystals 3-I-V [= 3- (3-iodophenyl)-1,5-diphenylverdazyl] and 3-Br-4-F-V [= 3-(3-bromo-4-fluorophenyl)-1,5- diphenylverdazyl]. Their crystal strucutures are found to be isomorphous to that of previously reported spin ladder 3-Cl-4-F-V. Through the quantitative analysis of their molecular arrangements and magnetic properties, we confirm that these materials form ferromagnetic chain-based spin ladders with slightly modulated magnetic interactions. These results present the first quantitative demonstration of the fine-tuning of magnetic interactions in the molecular- based materials.
We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite, with a non-equal number of sites on the two sublattices. Thus they share a key feature of the Hubba rd model in a class of lattices which Lieb has shown analytically to exhibit long-range ferrimagnetic order, while being amenable to powerful numeric approaches developed for quasi-one-dimensional geometries. The Density Matrix Renormalization Group (DMRG) method is used to obtain the ground state properties, e.g. excitation gaps, charge and spin densities as well as their correlation functions at half-filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries. Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized bipartite lattices. It also addresses the issue of how the alternation between quasi-long range order and spin liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation pattern.
We present a 14N nuclear magnetic resonance study of a single crystal of CuBr4(C5H12N)2 (BPCB) consisting of weakly coupled spin-1/2 Heisenberg antiferromagnetic ladders. Treating ladders in the gapless phase as Luttinger liquids, we are able to full y account for (i) the magnetic field dependence of the nuclear spin-lattice relaxation rate 1/T_1 at 250 mK and for (ii) the phase transition to a 3D ordered phase occuring below 110 mK due to weak interladder exchange coupling. BPCB is thus an excellent model system where the possibility to control Luttinger liquid parameters in a continuous manner is demonstrated and Luttinger liquid model tested in detail over the whole fermion band.
We study two-leg S=1/2 ladders with general isotropic exchange interactions between spins on neighboring rungs, whose ground state can be found exactly in a form of finitely correlated (matrix product) wave function. Two families of models admitting an exact solution are found: one yields translationally invariant ground states and the other describes spontaneously dimerized models with twofold degenerate ground state. Several known models with exact ground states can be obtained as particular cases from the general solution of the first family, which includes also a set of models with only bilinear interactions. Those two families of models have nonzero intersection, which enables us to determine exactly the phase boundary of the second-order transition into the dimerized phase and to study the properties of this transition. The structure of elementary excitations in the dimerized phase is discussed on the basis of a variational ansatz. For a particular class of models, we present exact wave functions of the elementary excitations becoming gapless at second-order transition lines. We also propose a generalization of the Bose-Gayen ladder model which has a rich phase diagram with all phase boundaries being exact.
Magnetic excitations in two-leg S=1/2 ladders are studied both experimentally and theoretically. Experimentally, we report on the reflectivity, the transmission and the optical conductivity sigma(omega) of undoped La_x Ca_14-x Cu_24 O_41 for x=4, 5, and 5.2. Using two different theoretical approaches (Jordan-Wigner fermions and perturbation theory), we calculate the dispersion of the elementary triplets, the optical conductivity and the momentum-resolved spectral density of two-triplet excitations for 0.2 <= J_parallel/J_perpendicular <= 1.2. We discuss phonon-assisted two-triplet absorption, the existence of two-triplet bound states, the two-triplet continuum, and the size of the exchange parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا