ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic properties of alternating Hubbard ladders

152   0   0.0 ( 0 )
 نشر من قبل Anas Abdelwahab
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite, with a non-equal number of sites on the two sublattices. Thus they share a key feature of the Hubbard model in a class of lattices which Lieb has shown analytically to exhibit long-range ferrimagnetic order, while being amenable to powerful numeric approaches developed for quasi-one-dimensional geometries. The Density Matrix Renormalization Group (DMRG) method is used to obtain the ground state properties, e.g. excitation gaps, charge and spin densities as well as their correlation functions at half-filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries. Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized bipartite lattices. It also addresses the issue of how the alternation between quasi-long range order and spin liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation pattern.



قيم البحث

اقرأ أيضاً

94 - H. Fehske , G. Hager , G. Wellein 2005
The formation of stripes in six-leg Hubbard ladders with cylindrical boundary conditions is investigated for two different hole dopings, where the amplitude of the hole density modulation is determined in the limits of vanishing DMRG truncation error s and infinitely long ladders. The results give strong evidence that stripes exist in the ground state of these systems for strong but not for weak Hubbard couplings. The doping dependence of these findings is analysed.
Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hubbard model. While many of their properties are accessible to numerical and analytical techniques, the question of whether weakly hole-doped Hubbard ladders are d ominated by superconducting or charge-density-wave correlations has so far eluded a definitive answer. In particular, previous numerical simulations of Hubbard ladders have seen a much faster decay of superconducting correlations than expected based on analytical arguments. We revisit this question using a state-of-the-art implementation of the density matrix renormalization group algorithm that allows us to simulate larger system sizes with higher accuracy than before. Performing careful extrapolations of the results, we obtain improved estimates for the Luttinger liquid parameter and the correlation functions at long distances. Our results confirm that, as suggested by analytical considerations, superconducting correlations become dominant in the limit of very small doping.
We investigate the formation of stripes in $7chunks times 6$ Hubbard ladders with $4chunks$ holes doped away from half filling using the density-matrix renormalization group (DMRG) method. A parallelized code allows us to keep enough density-matrix eigenstates (up to $m=8000$) and to study sufficiently large systems (with up to $7chunks = 21$ rungs) to extrapolate the stripe amplitude to the limits of vanishing DMRG truncation error and infinitely long ladders. Our work gives strong evidence that stripes exist in the ground state for strong coupling ($U=12t$) but that the structures found in the hole density at weaker coupling ($U=3t$) are an artifact of the DMRG approach.
We analyze the possible existence of topological phases in two-legged spin ladders considering a staggered interaction in both chains. When the staggered interaction in one chain is shifted by one site with respect to the other chain, the model can b e mapped, in the continuum limit, into a non linear sigma model NL$sigma$M plus a topological term which is nonvanishing when the number of legs is two. This implies the existence of a critical point which distinguishes two phases. We perform a numerical analysis of energy levels, parity and string non-local order parameters, correlation functions between $x,y,z$ components of spins at the edges of an open ladder, the degeneracy of the entanglement spectrum and the entanglement entropy in order to characterize these two different phases. Finally, we identify one phase with a Mott insulator and the other one with a Haldane insulator.
We study the dynamical spin response of doped two-leg Hubbard-like ladders in the framework of a low-energy effective field theory description given by the SO(6) Gross Neveu model. Using the integrability of the SO(6) Gross-Neveu model, we derive the low energy dynamical magnetic susceptibility. The susceptibility is characterized by an incommensurate coherent mode near $(pi,pi)$ and by broad two excitation scattering continua at other $k$-points. In our computation we are able to estimate the relative weights of these contributions. All calculations are performed using form-factor expansions which yield exact low energy results in the context of the SO(6) Gross-Neveu model. To employ this expansion, a number of hitherto undetermined form factors were computed. To do so, we developed a general approach for the computation of matrix elements of semi-local SO(6) Gross-Neveu operators. While our computation takes place in the context of SO(6) Gross-Neveu, we also consider the effects of perturbations away from an SO(6) symmetric model, showing that small perturbations at best quantitatively change the physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا