ﻻ يوجد ملخص باللغة العربية
We investigate the Hubbard Hamiltonian on ladders where the number of sites per rung alternates between two and three. These geometries are bipartite, with a non-equal number of sites on the two sublattices. Thus they share a key feature of the Hubbard model in a class of lattices which Lieb has shown analytically to exhibit long-range ferrimagnetic order, while being amenable to powerful numeric approaches developed for quasi-one-dimensional geometries. The Density Matrix Renormalization Group (DMRG) method is used to obtain the ground state properties, e.g. excitation gaps, charge and spin densities as well as their correlation functions at half-filling. We show the existence of long-range ferrimagnetic order in the one-dimensional ladder geometries. Our work provides detailed quantitative results which complement the general theorem of Lieb for generalized bipartite lattices. It also addresses the issue of how the alternation between quasi-long range order and spin liquid behavior for uniform ladders with odd and even numbers of legs might be affected by a regular alternation pattern.
The formation of stripes in six-leg Hubbard ladders with cylindrical boundary conditions is investigated for two different hole dopings, where the amplitude of the hole density modulation is determined in the limits of vanishing DMRG truncation error
Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hubbard model. While many of their properties are accessible to numerical and analytical techniques, the question of whether weakly hole-doped Hubbard ladders are d
We investigate the formation of stripes in $7chunks times 6$ Hubbard ladders with $4chunks$ holes doped away from half filling using the density-matrix renormalization group (DMRG) method. A parallelized code allows us to keep enough density-matrix
We analyze the possible existence of topological phases in two-legged spin ladders considering a staggered interaction in both chains. When the staggered interaction in one chain is shifted by one site with respect to the other chain, the model can b
We study the dynamical spin response of doped two-leg Hubbard-like ladders in the framework of a low-energy effective field theory description given by the SO(6) Gross Neveu model. Using the integrability of the SO(6) Gross-Neveu model, we derive the