ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotics of discrete Riesz $d$-polarization on subsets of $d$-dimensional manifolds

33   0   0.0 ( 0 )
 نشر من قبل Nattapong Bosuwan
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a conjecture of T. Erd{e}lyi and E.B. Saff, concerning the form of the dominant term (as $Nto infty$) of the $N$-point Riesz $d$-polarization constant for an infinite compact subset $A$ of a $d$-dimensional $C^{1}$-manifold embedded in $mathbb{R}^{m}$ ($dleq m$). Moreover, if we assume further that the $d$-dimensional Hausdorff measure of $A$ is positive, we show that any asymptotically optimal sequence of $N$-point configurations for the $N$-point $d$-polarization problem on $A$ is asymptotically uniformly distributed with respect to $mathcal H_d|_A$.

قيم البحث

اقرأ أيضاً

76 - D.P. Hardin , E.B. Saff 2003
For a compact set A in Euclidean space we consider the asymptotic behavior of optimal (and near optimal) N-point configurations that minimize the Riesz s-energy (corresponding to the potential 1/t^s) over all N-point subsets of A, where s>0. For a la rge class of manifolds A having finite, positive d-dimensional Hausdorff measure, we show that such minimizing configurations have asymptotic limit distribution (as N tends to infinity with s fixed) equal to d-dimensional Hausdorff measure whenever s>d or s=d. In the latter case we obtain an explicit formula for the dominant term in the minimum energy. Our results are new even for the case of the d-dimensional sphere.
We show that if $M$ is a sub-Riemannian manifold and $N$ is a Carnot group such that the nilpotentization of $M$ at almost every point is isomorphic to $N$, then there are subsets of $N$ of positive measure that embed into $M$ by bilipschitz maps. Fu rthermore, $M$ is countably $N$--rectifiable, i.e., all of $M$ except for a null set can be covered by countably many such maps.
High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical and hyperbolic planes. If in any o f these planes, or in ${Bbb R}^2$, there is a pair of closed convex sets with interior points, and the intersections of any congruent copies of these sets are centrally symmetric, then, under some mild hypotheses, our sets are congruent circles, or, for ${Bbb R}^2$, two parallel strips. We prove the analogue of this statement, for $S^d$, ${Bbb R}^d$, $H^d$, if we suppose $C^2_+$: again, our sets are congruent balls. In $S^2$, ${Bbb R}^2$ and $H^2$ we investigate a variant of this question: supposing that the numbers of connected components of the boundaries of both sets are finite, we exactly describe all pairs of such closed convex sets, with interior points, whose any congruent copies have an intersection with axial symmetry (there are 1, 5 or 9 cases, respectively).
In order to look for a well-behaved counterpart to Dolbeault cohomology in D-complex geometry, we study the de Rham cohomology of an almost D-complex manifold and its subgroups made up of the classes admitting invariant, respectively anti-invariant, representatives with respect to the almost D-complex structure, miming the theory introduced by T.-J. Li and W. Zhang in [T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-684] for almost complex manifolds. In particular, we prove that, on a 4-dimensional D-complex nilmanifold, such subgroups provide a decomposition at the level of the real second de Rham cohomology group. Moreover, we study deformations of D-complex structures, showing in particular that admitting D-Kaehler structures is not a stable property under small deformations.
This is the second of two papers wherein we estimate multiscale least squares approximations of certain measures by Menger-type curvatures. More specifically, we study an arbitrary d-regular measure on a real separable Hilbert space. The main result of the paper bounds the least squares error of approximation at any ball by an average of the discrete Menger-type curvature over certain simplices in in the ball. A consequent result bounds the Jones-type flatness by an integral of the discrete curvature over all simplices. The preceding paper provided the opposite inequalities. Furthermore, we demonstrate some other discrete curvatures for characterizing uniform rectifiability and additional continuous curvatures for characterizing special instances of the (p, q)-geometric property. We also show that a curvature suggested by Leger (Annals of Math, 149(3), p. 831-869, 1999) does not fit within our framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا