ﻻ يوجد ملخص باللغة العربية
In order to look for a well-behaved counterpart to Dolbeault cohomology in D-complex geometry, we study the de Rham cohomology of an almost D-complex manifold and its subgroups made up of the classes admitting invariant, respectively anti-invariant, representatives with respect to the almost D-complex structure, miming the theory introduced by T.-J. Li and W. Zhang in [T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-684] for almost complex manifolds. In particular, we prove that, on a 4-dimensional D-complex nilmanifold, such subgroups provide a decomposition at the level of the real second de Rham cohomology group. Moreover, we study deformations of D-complex structures, showing in particular that admitting D-Kaehler structures is not a stable property under small deformations.
In this paper, we develop results in the direction of an analogue of Sjamaar and Lermans singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman).
An n-dimensional complex manifold is a manifold by biholomorphic mappings between open sets of the finite direct product of the complex number field. On the other hand, when A is a commutative Banach algebra, Lorch gave a definition that an A-valued
We discuss the complex geometry of two complex five-dimensional Kahler manifolds which are homogeneous under the exceptional Lie group $G_2$. For one of these manifolds rigidity of the complex structure among all Kahlerian complex structures was prov
We study holomorphic GL(2) and SL(2) geometries on compact complex manifolds. We show that a compact Kahler manifold of complex even dimension higher than two admitting a holomorphic GL(2)-geometry is covered by a compact complex torus. We classify c
We characterize manifolds which are locally conformally equivalent to either complex projective space or to its negative curvature dual in terms of their Weyl curvature tensor. As a byproduct of this investigation, we classify the conformally complex