Comparison of magnetic field uniformities for discretized and finite-sized standard $costheta$, solenoidal, and spherical coils

435   0   0.0 ( 0 )
 نشر من قبل Brad Plaster
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A significant challenge for experiments requiring a highly uniform magnetic field concerns the identification and design of a discretized and finite-sized magnetic field coil of minimal size. In this work we compare calculations of the magnetic field uniformities and field gradients for three different standard (i.e., non-optimized) types of coils: $costheta$, solenoidal, and spherical coils. For an experiment with a particular requirement on either the field uniformity or the field gradient, we show that the volume required by a spherical coil form which satisfies these requirements can be significantly less than the volumes required by $costheta$ and solenoidal coil forms.



قيم البحث

اقرأ أيضاً

We provide analytic solutions of the net magnetic field generated by spherical and solenoidal coils enclosed in highly-permeable, coaxial magnetic shields. We consider both spherical and cylindrical shields in the case of the spherical coil and only cylindrical shields for the solenoidal coil. Comparisons of field homogeneity are made and we find that the solenoidal coil produces the more homogeneous field for a given number of windings. The models are useful as theoretical and conceptual guides for coil design, as well as for benchmarking finite-element analysis. We also demonstrate how the models can be generalized to explore field inhomogeneities related to winding misplacement.
A windowless hydrogen gas target of nominal thickness $10^{19}$ cm$^{-2}$ is an essential component of the DarkLight experiment, which is designed to utilize the megawatt electron beam at an Energy Recovery Linac (ERL). The design of such a target is challenging because the pressure drops by many orders of magnitude between the central, high-density section of the target and the surrounding beamline, resulting in laminar, transitional, and finally molecular flow regimes. The target system was assembled and operated at Jefferson Labs Low Energy Recirculator Facility (LERF) in 2016, and subsequently underwent several revisions and calibration tests at MIT Bates in 2017. The system at dynamic equilibrium was simulated in COMSOL to provide a better understanding of its optimal operation at other working points. We have determined that a windowless gas target with sufficiently high density for DarkLights experimental needs is feasible in an ERL environment.
The CALICE analog HCAL is a highly granular calorimeter, proposed for the International Linear Collider. It is based on scintillator tiles, read out by silicon photomultipliers (SiPMs). The effects of gaps between the calorimeter tiles, as well as th e non-uniform response of the tiles, in view of the impact on the energy resolution, are studied in Monte Carlo events. It is shown that these type of effects do not have a significant influence on the measurement of hadron showers.
A novel fusion product separator, based on a gas-filled 8 T superconducting solenoid has been developed at the Australian National University. Though the transmission efficiency of the solenoid is very high, precision cross section measurements requi re knowledge of the angular distribution of the evaporation residues. A method has been developed to deduce the angular distribution of the evaporation residues from the laboratory-frame velocity distribution of the evaporation residues measured at the exit of the separator. The features of this method are presented, focusing on the example of $^{34}$S+$^{89}$Y which is compared to an independent measurement of the angular distribution. The establishment of this method now allows the novel solenoidal separator to be used to obtain reliable, precision fusion cross-sections.
As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was op erated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا