ﻻ يوجد ملخص باللغة العربية
A novel fusion product separator, based on a gas-filled 8 T superconducting solenoid has been developed at the Australian National University. Though the transmission efficiency of the solenoid is very high, precision cross section measurements require knowledge of the angular distribution of the evaporation residues. A method has been developed to deduce the angular distribution of the evaporation residues from the laboratory-frame velocity distribution of the evaporation residues measured at the exit of the separator. The features of this method are presented, focusing on the example of $^{34}$S+$^{89}$Y which is compared to an independent measurement of the angular distribution. The establishment of this method now allows the novel solenoidal separator to be used to obtain reliable, precision fusion cross-sections.
Radiative alpha-capture, ($alpha,gamma$), reactions play a critical role in nucleosynthesis and nuclear energy generation in a variety of astrophysical environments. The St. George recoil separator at the University of Notre Dames Nuclear Science Lab
Composite detectors made of stainless steel converters and multigap resistive plate chambers have been irradiated with quasi-monoenergetic neutrons with a peak energy of 175MeV. The neutron detection efficiency has been determined using two different
To improve the ability of particle identification of the RIBLL2 separator at the HIRFL-CSR complex, a new high-performance detector for measuring fragment starting time and position at the F1 dispersive plane has been constructed and installed, and a
A high-purity co-axial germanium detector has been calibrated in efficiency to a precision of about 0.15% over a wide energy range. High-precision scans of the detector crystal and gamma-ray source measurements have been compared to Monte-Carlo simul
We have developed a method for achieving excellent resolving power in in-flight particle identification of radioactive isotope (RI) beams at the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory (RIBF). In the BigRIPS separator,