ﻻ يوجد ملخص باللغة العربية
We construct effective hydrodynamics for composite particles in (2+1) dimensions carrying a magnetic flux by employing a holographic approach. The hydrodynamics is obtained by perturbation of the dyonic black brane solutions in the derivative expansion. We introduce a consistent way to avoid mixing of different orders in the expansion. Thanks to this method, it is possible to take the strong external magnetic field limit in the dual field theory. To compare our result with those for a composite particle system, we study several cases that correspond to special solutions of Einsteins equation and Maxwells equations.
We extend the recent work on fluid-gravity correspondence to charged black-branes by determining the metric duals to arbitrary charged fluid configuration up to second order in the boundary derivative expansion. We also derive the energy-momentum ten
We study anomalous hydrodynamics with a dyonic charge. We show that the local second law of thermodynamics constrains the structure of the anomaly in addition to the structure of the hydrodynamic constitutive equations. In particular, we show that no
We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing
It is shown that the previously noticed internal dynamical $SO(D-1)$ symmetry arXiv:1003.5189 for relativistic M-branes moving in $D$-dimensional space-time is naturally realized in the (extended by powers of $frac{1}{p_+}$) enveloping algebra of the Poincare algebra.
In this article, we study the circular motion of particles and the well-known Penrose mechanism around a Kerr-Newman-Kasuya black hole spacetime. The inner and outer horizons, as well as ergosurfaces of the said black hole, are briefly examined under