ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal hydrodynamics of non-conformal branes

91   0   0.0 ( 0 )
 نشر من قبل Skenderis Kostas
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be zeta/eta = 2(1/(d-1) - c_s^2), where c_s is the speed of sound in the fluid.

قيم البحث

اقرأ أيضاً

We set up precision holography for the non-conformal branes preserving 16 supersymmetries. The near-horizon limit of all such p-brane solutions with p leq 4, including the case of fundamental string solutions, is conformal to AdS_{p+2} x S^{8-p} with a linear dilaton. We develop holographic renormalization for all these cases. In particular, we obtain the most general asymptotic solutions with appropriate Dirichlet boundary conditions, find the corresponding counterterms and compute the holographic 1-point functions, all in complete generality and at the full non-linear level. The result for the stress energy tensor properly defines the notion of mass for backgrounds with such asymptotics. The analysis is done both in the original formulation of the method and also using a radial Hamiltonian analysis. The latter formulation exhibits most clearly the existence of an underlying generalized conformal structure. In the cases of Dp-branes, the corresponding dual boundary theory, the maximally supersymmetric Yang-Mills theory SYM_{p+1}, indeed exhibits the generalized conformal structure found at strong coupling. We compute the holographic 2-point functions of the stress energy tensor and gluon operator and show they satisfy the expected Ward identities and the constraints of generalized conformal structure. The holographic results are also manifestly compatible with the M-theory uplift, with the asymptotic solutions, counterterms, one and two point functions etc of the IIA F1 and D4 appropriately descending from those of M2 and M5 branes, respectively. We present a few applications including the computation of condensates in Wittens model of holographic YM_4 theory.
In the Einestein-dilaton theory with a Liouville potential parameterized by $eta$, we find a Schwarzschild-type black hole solution. This black hole solution, whose asymptotic geometry is described by the warped metric, is thermodynamically stable on ly for $0 le eta < 2$. Applying the gauge/gravity duality, we find that the dual gauge theory represents a non-conformal thermal system with the equation of state depending on $eta$. After turning on the bulk vector fluctuations with and without a dilaton coupling, we calculate the charge diffusion constant, which indicates that the life time of the quasi normal mode decreases with $eta$. Interestingly, the vector fluctuation with the dilaton coupling shows that the DC conductivity increases with temperature, a feature commonly found in electrolytes.
We extend the recent work on fluid-gravity correspondence to charged black-branes by determining the metric duals to arbitrary charged fluid configuration up to second order in the boundary derivative expansion. We also derive the energy-momentum ten sor and the charge current for these configurations up to second order in the boundary derivative expansion. We find a new term in the charge current when there is a bulk Chern-Simons interaction thus resolving an earlier discrepancy between thermodynamics of charged rotating black holes and boundary hydrodynamics. We have also confirmed that all our expressions are covariant under boundary Weyl-transformations as expected.
We construct effective hydrodynamics for composite particles in (2+1) dimensions carrying a magnetic flux by employing a holographic approach. The hydrodynamics is obtained by perturbation of the dyonic black brane solutions in the derivative expansi on. We introduce a consistent way to avoid mixing of different orders in the expansion. Thanks to this method, it is possible to take the strong external magnetic field limit in the dual field theory. To compare our result with those for a composite particle system, we study several cases that correspond to special solutions of Einsteins equation and Maxwells equations.
108 - Akash Jain , Pavel Kovtun 2020
We investigate the effects of stochastic interactions on hydrodynamic correlation functions using the Schwinger-Keldysh effective field theory. We identify new stochastic transport coefficients that are invisible in the classical constitutive relatio ns, but nonetheless affect the late-time behaviour of hydrodynamic correlation functions through loop corrections. These results indicate that classical transport coefficients do not provide a universal characterisation of long-distance, late-time correlations even within the framework of fluctuating hydrodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا