ﻻ يوجد ملخص باللغة العربية
We examine the hydrodynamic limit of non-conformal branes using the recently developed precise holographic dictionary. We first streamline the discussion of holography for backgrounds that asymptote locally to non-conformal brane solutions by showing that all such solutions can be obtained from higher dimensional asymptotically locally AdS solutions by suitable dimensional reduction and continuation in the dimension. As a consequence, many holographic results for such backgrounds follow from the corresponding results of the Asymptotically AdS case. In particular, the hydrodynamics of non-conformal branes is fully determined in terms of conformal hydrodynamics. Using previous results on the latter we predict the form of the non-conformal hydrodynamic stress tensor to second order in derivatives. Furthermore we show that the ratio between bulk and shear viscosity is fixed by the generalized conformal structure to be zeta/eta = 2(1/(d-1) - c_s^2), where c_s is the speed of sound in the fluid.
We set up precision holography for the non-conformal branes preserving 16 supersymmetries. The near-horizon limit of all such p-brane solutions with p leq 4, including the case of fundamental string solutions, is conformal to AdS_{p+2} x S^{8-p} with
In the Einestein-dilaton theory with a Liouville potential parameterized by $eta$, we find a Schwarzschild-type black hole solution. This black hole solution, whose asymptotic geometry is described by the warped metric, is thermodynamically stable on
We extend the recent work on fluid-gravity correspondence to charged black-branes by determining the metric duals to arbitrary charged fluid configuration up to second order in the boundary derivative expansion. We also derive the energy-momentum ten
We construct effective hydrodynamics for composite particles in (2+1) dimensions carrying a magnetic flux by employing a holographic approach. The hydrodynamics is obtained by perturbation of the dyonic black brane solutions in the derivative expansi
We investigate the effects of stochastic interactions on hydrodynamic correlation functions using the Schwinger-Keldysh effective field theory. We identify new stochastic transport coefficients that are invisible in the classical constitutive relatio