ﻻ يوجد ملخص باللغة العربية
A nice paper by Morrison demonstrates the recent convergence of opinion that has taken place concerning the graviton propagator on de Sitter background. We here discuss the few points which remain under dispute. First, the inevitable decay of tachyonic scalars really does result in their 2-point functions breaking de Sitter invariance. This is obscured by analytic continuation techniques which produce formal solutions to the propagator equation that are not propagators. Second, Morrisons de Sitter invariant solution for the spin two sector of the graviton propagator involves derivatives of the scalar propagator at $M^2 = 0$, where it is not meromorphic unless de Sitter breaking is permitted. Third, de Sitter breaking does not require zero modes. Fourth, the ambiguity Morrison claims in the equation for the spin two structure function is fixed by requiring it to derive from a mode sum. Fifth, Morrisons spin two sector is not physically equivalent to ours because their coincidence limits differ. Finally, it is only the noninvariant propagator that gets the time independence and scale invariance of the tensor power spectrum correctly.
The Lorentzian Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) spinfoam model and the Conrady-Hnybida (CH) timelike-surface extension can be expressed in the integral form $int e^S$. This work studies the analytic continuation of the spinfoam
The tidal response of a compact object is a key gravitational-wave observable encoding information about its interior. This link is subtle due to the nonlinearities of general relativity. We show that considering a scattering process bypasses challen
In this work a series of methods are developed for understanding the Friedmann equation when it is beyond the reach of the Chebyshev theorem. First it will be demonstrated that every solution of the Friedmann equation admits a representation as a rou
We present a self-gravitating, analytic and globally regular Skyrmion solution of the Einstein-Skyrme system with winding number w = 1, in presence of a cosmological constant. The static spacetime metric is the direct product RxS3 and the Skyrmion is
We define the analytic continuation of the number of black hole microstates in Loop Quantum Gravity to complex values of the Barbero-Immirzi parameter $gamma$. This construction deeply relies on the link between black holes and Chern-Simons theory. T