ترغب بنشر مسار تعليمي؟ اضغط هنا

Friedmann-Lemaitre Cosmologies via Roulettes and Other Analytic Methods

117   0   0.0 ( 0 )
 نشر من قبل Gary Gibbons
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work a series of methods are developed for understanding the Friedmann equation when it is beyond the reach of the Chebyshev theorem. First it will be demonstrated that every solution of the Friedmann equation admits a representation as a roulette such that information on the latter may be used to obtain that for the former. Next the Friedmann equation is integrated for a quadratic equation of state and for the Randall--Sundrum II universe, leading to a harvest of a rich collection of new interesting phenomena. Finally an analytic method is used to isolate the asymptotic behavior of the solutions of the Friedmann equation, when the equation of state is of an extended form which renders the integration impossible, and to establish a universal exponential growth law.



قيم البحث

اقرأ أيضاً

We completely classify Friedmann-Lema^{i}tre-Robertson-Walker solutions with spatial curvature $K=0,pm 1$ and equation of state $p=wrho$, according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditi ons and allow $rho < 0$, thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for $w>-1/3$ and $rho>0$, while no big-bang singularity for $w<-1$ and $rho>0$. For $K=0$ or $-1$, $-1<w<-1/3$ and $rho>0$, there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for $w<-1$ and $rho>0$, with null geodesics being future complete for $-5/3le w<-1$ but incomplete for $w<-5/3$. For $w=-1/3$, the expansion speed is constant. For $-1<w<-1/3$ and $K=1$, the universe contracts from infinity, then bounces and expands back to infinity. For $K=0$, the past boundary consists of timelike infinity and a regular null hypersurface for $-5/3<w<-1$, while it consists of past timelike and past null infinities for $wle -5/3$. For $w<-1$ and $K=1$, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For $w<-1$ and $K=-1$, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for $win (-1,1/3)$, $win {1/3, -1}$ and $win (-infty,-1)cup (1/3,infty)$, respectively. A negative energy density ($rho <0$) is possible only for $K=-1$. In this case, for $w>-1/3$, the universe contracts from infinity, then bounces and expands to infinity; for $-1<w<-1/3$, it starts from a big-bang singularity and contracts to a big-crunch singularity; for $w<-1$, it expands from a regular null hypersurface and contracts to another regular null hypersurface.
Current astronomical observations are successfully explained by the present cosmological paradigm based on the concordance model ($Lambda_0$CDM + Inflation). However, such a scenario is composed of a heterogeneous mix of ingredients for describing th e different stages of cosmological evolution. Particularly, it does not give an unified explanation connecting the early and late time accelerating inflationary regimes which are separated by many aeons. Other challenges to the concordance model include: a singularity at early times or the emergence of the Universe from the quantum gravity regime, the graceful exit from inflation to the standard radiation phase, as well as, the coincidence and cosmological constant problems. We show here that a simple running vacuum model or a time-dependent vacuum may provide insight to some of the above open questions (including a complete cosmic history), and also can explain the observed matter-antimatter asymmetry just after the initial deflationary period.
A regularization procedure has been recently suggested for regularizing Big Bang singularities in Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes. We argue that this procedure is only appliable to one case of Big Bang singularities and does not affect other types of singularities.
We use an alternative interpretation of quantum mechanics, based on the Bohmian trajectory approach, and show that the quantum effects can be included in the classical equation of motion via a conformal transformation on the background metric. We app ly this method to the Robertson-Walker metric to derive a modified version of Friedmanns equations for a Universe consisting of scalar, spin-zero, massive particles. These modified equations include additional terms that result from the non-local nature of matter and appear as an acceleration in the expansion of the Universe. We see that the same effect may also be present in the case of an inhomogeneous expansion.
We discuss the most general field equations for cosmological spacetimes for theories of gravity based on non-linear extensions of the non-metricity scalar and the torsion scalar. Our approach is based on a systematic symmetry-reduction of the metric- affine geometry which underlies these theories. While for the simplest conceivable case the connection disappears from the field equations and one obtains the Friedmann equations of General Relativity, we show that in $f(mathbb{Q})$ cosmology the connection generically modifies the metric field equations and that some of the connection components become dynamical. We show that $f(mathbb{Q})$ cosmology contains the exact General Relativity solutions and also exact solutions which go beyond. In $f(mathbb{T})$~cosmology, however, the connection is completely fixed and not dynamical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا