ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic Continuation of Black Hole Entropy in Loop Quantum Gravity

122   0   0.0 ( 0 )
 نشر من قبل Karim Noui
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We define the analytic continuation of the number of black hole microstates in Loop Quantum Gravity to complex values of the Barbero-Immirzi parameter $gamma$. This construction deeply relies on the link between black holes and Chern-Simons theory. Technically, the key point consists in writing the number of microstates as an integral in the complex plane of a holomorphic function, and to make use of complex analysis techniques to perform the analytic continuation. Then, we study the thermodynamical properties of the corresponding system (the black hole is viewed as a gas of indistinguishable punctures) in the framework of the grand canonical ensemble where the energy is defined a la Frodden-Gosh-Perez from the point of view of an observer located close to the horizon. The semi-classical limit occurs at the Unruh temperature $T_U$ associated to this local observer. When $gamma=pm i$, the entropy reproduces at the semi-classical limit the area law with quantum corrections. Furthermore, the quantum corrections are logarithmic provided that the chemical potential is fixed to the simple value $mu=2T_U$.



قيم البحث

اقرأ أيضاً

The role of torsion in quantum three-dimensional gravity is investigated by studying the partition function of the Euclidean theory in Riemann-Cartan spacetime. The entropy of the black hole with torsion is found to differ from the standard Bekenstei n-Hawking result, but its form is in complete agreement with the first law of black hole thermodynamics.
67 - Yong Xiao , Yu Tian 2021
It has been known for many years that the leading correction to the black hole entropy is a logarithmic term, which is universal and closely related to conformal anomaly. A fully consistent analysis of this issue has to take quantum backreactions to the black hole geometry into account. However, it was always unclear how to naturally derive the modified black hole metric especially from an effective action, because the problem refers to the elusive non-locality of quantum gravity. In this paper, we show that this problem can be resolved within an effective field theory (EFT) framework of quantum gravity. Our work suggests that the EFT approach provides a powerful and self-consistent tool for studying the quantum gravitational corrections to black hole geometries and thermodynamics.
We study the entropy of the black hole with torsion using the covariant form of the partition function. The regularization of infinities appearing in the semiclassical calculation is shown to be consistent with the grand canonical boundary conditions . The correct value for the black hole entropy is obtained provided the black hole manifold has two boundaries, one at infinity and one at the horizon. However, one can construct special coordinate systems, in which the entropy is effectively associated with only one of these boundaries.
In this work, we have calculated the polar gravitational quasinormal modes for a quantum corrected black hole model, that arises in the context of Loop Quantum Gravity, known as Self-Dual Black Hole. In this way, we have calculated the characteristic frequencies using the WKB approach, where we can verify a strong dependence with the Loop Quantum Gravity parameters. At the same time we check that the Self-Dual Black Hole is stable under polar gravitational perturbations, we can also verify that the spectrum of the polar quasinormal modes differs from the axial one cite{Cruz:2015bcj}. Such a result tells us that isospectrality is broken in the context of Self Dual Black Holes.
In this work we derive a generalized Newtonian gravitational force and show that it can account for the anomalous galactic rotation curves. We derive the entropy-area relationship applying the Feynman-Hibbs procedure to the supersymmetric Wheeler-DeW itt equation of the Schwarzschild black hole. We obtain the modifications to the Newtonian gravitational force from the entropic formulation of gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا