ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystallographic, Electronic, Thermal and Magnetic Properties of Single-Crystal SrCo2As2

436   0   0.0 ( 0 )
 نشر من قبل David C. Johnston
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In tetragonal SrCo2As2 single crystals, inelastic neutron scattering measurements demonstrated that strong stripe-type antiferromagnetic (AFM) correlations occur at a temperature T = 5 K [W. Jayasekara et al., arXiv:1306.5174] that are the same as in the isostructural AFe2As2 (A = Ca, Sr, Ba) parent compounds of high-Tc superconductors. This surprising discovery suggests that SrCo2As2 may also be a good parent compound for high-Tc superconductivity. Here, structural and thermal expansion, electrical resistivity rho, angle-resolved photoemission spectroscopy (ARPES), heat capacity Cp, magnetic susceptibility chi, 75As NMR and neutron diffraction measurements of SrCo2As2 crystals are reported together with LDA band structure calculations that shed further light on this fascinating material. The c-axis thermal expansion coefficient alpha_c is negative from 7 to 300 K, whereas alpha_a is positive over this T range. The rho(T) shows metallic character. The ARPES measurements and band theory confirm the metallic character and in addition show the presence of a flat band near the Fermi energy E_F. The band calculations exhibit an extremely sharp peak in the density of states D(E_F) arising from a flat d_{x^2 - y^2} band. A comparison of the Sommerfeld coefficient of the electronic specific heat with chi(T = 0) suggests the presence of strong ferromagnetic itinerant spin correlations which on the basis of the Stoner criterion predicts that SrCo2As2 should be an itinerant ferromagnet, in conflict with the magnetization data. The chi(T) does have a large magnitude, but also exhibits a broad maximum at 115 K suggestive of dynamic short-range AFM spin correlations, in agreement with the neutron scattering data. The measurements show no evidence for any type of phase transition between 1.3 and 300 K and we propose that metallic SrCo2As2 has a gapless quantum spin-liquid ground state.



قيم البحث

اقرأ أيضاً

Doped BaCoSO was recently predicted to be a high-temperature superconductor in a new class based on Co and Ni. Using a Co-S self flux method, we synthesized single crystals of the antiferromagnetic insulator BaCoSO. Our magnetic and specific heat mea surements and neutron diffraction provide details of its magnetic anisotropy and order. Its band gap was determined to be about 1.3 eV by our measurements of its photoemission spectrum and infrared optical conductivity. Our results can pave the way to exploring the predicted superconductivity in this Co-based material.
105 - Yogesh Singh , Y. Lee , S. Nandi 2008
Single crystals of BaRh_2As_2 have been synthesized from a Pb flux. We present the room temperature crystal structure, single crystal x-ray diffraction measurements as a function of temperature T, anisotropic magnetic susceptibility chi versus T, ele ctrical resistivity in the ab-plane rho versus T, Hall coefficient versus T and magnetic field H, and heat capacity C versus T measurements on the crystals. The single crystal structure determination confirms that BaRh_2As_2 forms in the tetragonal ThCr_2Si_2 type structure (space group I4/mmm) with lattice parameters a = b = 4.0564(6)AA and c = 12.797(4) AA. Band structure calculations show that BaRh_2As_2 should be metallic with a small density of states at the Fermi energy N(E_ F) = 3.49 states/eV f.u. (where f.u. equiv formula unit) for both spin directions. rho(T) data in the ab-plane confirm that the material is indeed metallic with a residual resistivity rho(2K) = 29 mu Omega cm, and with a residual resistivity ratio rho(310K)/rho(2K) = 5.3. The observed chi(T) is small (sim 10^{-5} cm^3/mol) and weakly anisotropic with chi_{ab}/chi_ c approx 2. The C(T) data indicate a small density of states at the Fermi energy with the low temperature Sommerfeld coefficient gamma = 4.7(9) mJ/mol K^2. There are no indications of superconductivity, spin density wave, or structural transitions between 2K and 300K. We compare the calculated density of states versus energy of BaRh_2As_2 with that of BaFe_2As_2.
We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above $T_{rm c} sim$ 0.6 K. These behaviors were expected in $S$-type CeCu$_2$Si$_2$. The temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, $1/T_1$ in the SC state could be fitted with the two-gap $s_{pm}$-wave rather than the two-gap $s_{++}$-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below $T_{rm c}$, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from $1/T_1T$, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field $H_{c2}$, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.
We report the in-plane resistivity and magnetic susceptibility of the layered cobalt oxide Na$_{0.35}$CoO$_{2}{cdot}1.3$H$_{2}$O single crystal. The temperature dependence of the resistivity shows metallic behavior from room temperature to the superc onducting transition temperature $T_{c}$ of 4.5 K. Sharp resistive transition, zero resistivity and almost perfect superconducting volume fraction below $T_{c}$ indicate the good quality and the bulk superconductivity of the single crystal. The upper critical field $H_{c2}$ and the coherence length $xi$ are obtained from the resistive transitions in magnetic field parallel to the c-axis and the $ab$-plane. The anisotropy of $xi$, $xi_{ab} / xi_{c} =$ 12 nm/1.3 nm $simeq$ 9.2, suggests that this material is considered to be an anisotropic three dimensional superconductor. In the field parallel to the $ab$-plane, $H_{c2}$ seems to be suppressed to the value of Pauli paramagnetic limit. It may indicate the spin singlet superconductivity in the cobalt oxide.
We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا