ﻻ يوجد ملخص باللغة العربية
Single crystals of BaRh_2As_2 have been synthesized from a Pb flux. We present the room temperature crystal structure, single crystal x-ray diffraction measurements as a function of temperature T, anisotropic magnetic susceptibility chi versus T, electrical resistivity in the ab-plane rho versus T, Hall coefficient versus T and magnetic field H, and heat capacity C versus T measurements on the crystals. The single crystal structure determination confirms that BaRh_2As_2 forms in the tetragonal ThCr_2Si_2 type structure (space group I4/mmm) with lattice parameters a = b = 4.0564(6)AA and c = 12.797(4) AA. Band structure calculations show that BaRh_2As_2 should be metallic with a small density of states at the Fermi energy N(E_ F) = 3.49 states/eV f.u. (where f.u. equiv formula unit) for both spin directions. rho(T) data in the ab-plane confirm that the material is indeed metallic with a residual resistivity rho(2K) = 29 mu Omega cm, and with a residual resistivity ratio rho(310K)/rho(2K) = 5.3. The observed chi(T) is small (sim 10^{-5} cm^3/mol) and weakly anisotropic with chi_{ab}/chi_ c approx 2. The C(T) data indicate a small density of states at the Fermi energy with the low temperature Sommerfeld coefficient gamma = 4.7(9) mJ/mol K^2. There are no indications of superconductivity, spin density wave, or structural transitions between 2K and 300K. We compare the calculated density of states versus energy of BaRh_2As_2 with that of BaFe_2As_2.
In tetragonal SrCo2As2 single crystals, inelastic neutron scattering measurements demonstrated that strong stripe-type antiferromagnetic (AFM) correlations occur at a temperature T = 5 K [W. Jayasekara et al., arXiv:1306.5174] that are the same as in
We report on the synthesis and physical properties of cm-sized CoGeO$_3$ single crystals grown in a high pressure mirror furnace at pressures of 80~bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly ani
A series of high quality NaFe$_{1-x}$Cu$_x$As single crystals has been grown by a self-flux technique, which were systematically characterized via structural, transport, thermodynamic, and high pressure measurements. Both the structural and magnetic
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of
In this letter, we report growth and characterization of bulk Bi2Se3 single crystals. The studied Bi2Se3 crystals are grown by self flux method through solid state reaction from high temperature (950C) melt of constituent elements and slow cooling (2