ترغب بنشر مسار تعليمي؟ اضغط هنا

Andromedas Dust

47   0   0.0 ( 0 )
 نشر من قبل Bruce T. Draine
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and PAH abundance, out to R=25kpc. The global dust mass is M_d=5.4x10^7Msol, the global dust/H mass ratio is M_d/M_H=0.0081, and the global PAH abundance is <q_PAH>=0.039. The dust surface density has an inner ring at R=5.6kpc, a maximum at R=11.2kpc, and an outer ring at R=15.1kpc. The dust/gas ratio varies from M_d/M_H=0.026 at the center to ~0.0027 at R=25kpc. From the dust/gas ratio, we estimate the ISM metallicity to vary by a factor ~10, from Z/Zsol=3 at R=0 to ~0.3 at R=25kpc. The dust heating rate parameter <U> peaks at the center, with <U> approx 35, declining to <U> approx 0.25 at R=20kpc. Within the central kpc, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q_PAH=0.045 at R=11.2kpc. When allowance is made for the different spectrum of the bulge stars, q_PAH for the dust in the central kpc is similar to the overall value of q_PAH in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500um emission at R=2-6kpc, suggesting that at R=2-6kpc, the dust opacity varies more steeply with frequency (with beta approx 2.3 between 200 and 600um) than in the model

قيم البحث

اقرأ أيضاً

The Andromeda galaxy (M31) shows many tidal features in its halo, including the Giant Southern Stream (GSS) and a sharp ledge in surface density on its western side (the W Shelf). Using DEIMOS on the Keck telescope, we obtain radial velocities of M31 s giant stars along its NW minor axis, in a radial range covering the W Shelf and extending beyond its edge. In the space of velocity versus radius, the sample shows the wedge pattern expected from a radial shell, which is detected clearly here for the first time. This confirms predictions from an earlier model of formation of the GSS, which proposed that the W Shelf is a shell from the third orbital wrap of the same tidal debris stream that produces the GSS, with the main body of the progenitor lying in the second wrap. We calculate the distortions in the shelf wedge pattern expected from its outward expansion and angular momentum, and show that these effects are echoed in the data. In addition, a hot, relatively smooth spheroid population is clearly present. We construct a bulge-disk-halo N-body model that agrees with surface brightness and kinematic constraints, and combine it with a simulation of the GSS. From the contrasting kinematic signatures of the hot spheroid and shelf components, we decompose the observed stellar metallicity distribution into contributions from each component using a non-parametric mixture model. The shelf components metallicity distribution matches previous observations of the GSS superbly, further strengthening the evidence they are connected and bolstering the case for a massive progenitor of this stream.
We present a detailed analysis of the radial distribution of dust properties in the SINGS sample, performed on a set of UV, IR and HI surface brightness profiles, combined with published molecular gas profiles and metallicity gradients. The internal extinction, derived from the TIR-to-FUV luminosity ratio, decreases with radius, and is larger in Sb-Sbc galaxies. The TIR-to-FUV ratio correlates with the UV spectral slope beta, following a sequence shifted to redder UV colors with respect to that of starbursts. The star formation history (SFH) is identified as the main driver of this departure. We have also derived radial profiles of the total dust mass surface density, the fraction of the dust mass contributed by PAHs, the fraction of the dust mass heated by very intense starlight and the intensity of the radiation field heating the grains. The dust profiles are exponential, their radial scale-length being constant from Sb to Sd galaxies (only ~10% larger than the stellar scale-length). Many S0/a-Sab galaxies have central depressions in their dust radial distributions. The PAH abundance increases with metallicity for 12+log(O/H)<9, and at larger metallicities the trend flattens and even reverses, with the SFH being a plausible underlying driver for this behavior. The dust-to-gas ratio is also well correlated with metallicity and therefore decreases with galactocentric radius.
Photometry in B, V (down to V ~ 26 mag) is presented for two 23 x 23 fields of the Andromeda galaxy (M31) that were observed with the blue channel camera of the Large Binocular Telescope during the Science Demonstration Time. Each field covers an are a of about 5.1kpc x 5.1kpc at the distance of M31 ((m-M)o ~ 24.4 mag), sampling, respectively, a northeast region close to the M31 giant stream (field S2), and an eastern portion of the halo in the direction of the galaxy minor axis (field H1). The stream field spans a region that includes Andromedas disk and the giant stream, and this is reflected in the complexity of the color magnitude diagram of the field. One corner of the halo field also includes a portion of the giant stream. Even though these demonstration time data were obtained under non-optimal observing conditions the B photometry, acquired in time-series mode, allowed us to identify 274 variable stars (among which 96 are bona fide and 31 are candidate RR Lyrae stars, 71 are Cepheids, and 16 are binary systems) by applying the image subtraction technique to selected portions of the observed fields. Differential flux light curves were obtained for the vast majority of these variables. Our sample includes mainly pulsating stars which populate the instability strip from the Classical Cepheids down to the RR Lyrae stars, thus tracing the different stellar generations in these regions of M31 down to the horizontal branch of the oldest (t ~ 10 Gyr) component.
Dust has long been identified as a barrier to measuring inherent galaxy properties. However, the link between dust and attenuation is not straightforward and depends on both the amount of dust and its distribution. Herschel imaging of nearby galaxies undertaken as part of the KINGFISH project allows us to map the dust as seen in emission with unprecedented sensitivity and ~1 kpc resolution. We present here new optical integral field unit spectroscopy for eight of these galaxies that provides complementary 100-200 pc scale maps of the dust attenuation through observation of the reddening in both the Balmer decrement and the stellar continuum. The stellar continuum reddening, which is systematically less than that observed in the Balmer decrement, shows no clear correlation with the dust, suggesting that the distribution of stellar reddening acts as a poor tracer of the overall dust content. The brightest HII regions are observed to be preferentially located in dusty regions, and we do find a correlation between the Balmer line reddening and the dust mass surface density for which we provide an empirical relation. Some of the high-inclination systems in our sample exhibit high extinction, but we also find evidence that unresolved variations in the dust distribution on scales smaller than 500 pc may contribute to the scatter in this relation. We caution against the use of integrated A_V measures to infer global dust properties.
Polarized Galactic foregrounds are one of the primary sources of systematic error in measurements of the B-mode polarization of the Cosmic Microwave Background (CMB). Experiments are becoming increasingly sensitive to complexities in the foreground f requency spectra that are not captured by standard parametric models, potentially affecting our ability to efficiently separate out these components. Employing a suite of dust models encompassing a variety of physical effects, we simulate observations of a future seven-band CMB experiment to assess the impact of these complexities on parametric component separation. We identify configurations of frequency bands that minimize the `model errors caused by fitting simple parametric models to more complex `true foreground spectra, which bias the inferred CMB signal. We find that: (a) fits employing a simple two parameter modified blackbody (MBB) dust model tend to produce significant bias in the recovered polarized CMB signal in the presence of physically realistic dust foregrounds; (b) generalized MBB models with three additional parameters reduce this bias in most cases, but non-negligible biases can remain, and can be hard to detect; and (c) line of sight effects, which give rise to frequency decorrelation, and the presence of iron grains are the most problematic complexities in the dust emission for recovering the true CMB signal. More sophisticated simulations will be needed to demonstrate that future CMB experiments can successfully mitigate these more physically realistic dust foregrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا