ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectroscopic survey of Andromedas Western Shelf

42   0   0.0 ( 0 )
 نشر من قبل Mark Fardal
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Andromeda galaxy (M31) shows many tidal features in its halo, including the Giant Southern Stream (GSS) and a sharp ledge in surface density on its western side (the W Shelf). Using DEIMOS on the Keck telescope, we obtain radial velocities of M31s giant stars along its NW minor axis, in a radial range covering the W Shelf and extending beyond its edge. In the space of velocity versus radius, the sample shows the wedge pattern expected from a radial shell, which is detected clearly here for the first time. This confirms predictions from an earlier model of formation of the GSS, which proposed that the W Shelf is a shell from the third orbital wrap of the same tidal debris stream that produces the GSS, with the main body of the progenitor lying in the second wrap. We calculate the distortions in the shelf wedge pattern expected from its outward expansion and angular momentum, and show that these effects are echoed in the data. In addition, a hot, relatively smooth spheroid population is clearly present. We construct a bulge-disk-halo N-body model that agrees with surface brightness and kinematic constraints, and combine it with a simulation of the GSS. From the contrasting kinematic signatures of the hot spheroid and shelf components, we decompose the observed stellar metallicity distribution into contributions from each component using a non-parametric mixture model. The shelf components metallicity distribution matches previous observations of the GSS superbly, further strengthening the evidence they are connected and bolstering the case for a massive progenitor of this stream.

قيم البحث

اقرأ أيضاً

Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and PAH abundance, out to R=25kpc. The global dust m ass is M_d=5.4x10^7Msol, the global dust/H mass ratio is M_d/M_H=0.0081, and the global PAH abundance is <q_PAH>=0.039. The dust surface density has an inner ring at R=5.6kpc, a maximum at R=11.2kpc, and an outer ring at R=15.1kpc. The dust/gas ratio varies from M_d/M_H=0.026 at the center to ~0.0027 at R=25kpc. From the dust/gas ratio, we estimate the ISM metallicity to vary by a factor ~10, from Z/Zsol=3 at R=0 to ~0.3 at R=25kpc. The dust heating rate parameter <U> peaks at the center, with <U> approx 35, declining to <U> approx 0.25 at R=20kpc. Within the central kpc, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q_PAH=0.045 at R=11.2kpc. When allowance is made for the different spectrum of the bulge stars, q_PAH for the dust in the central kpc is similar to the overall value of q_PAH in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500um emission at R=2-6kpc, suggesting that at R=2-6kpc, the dust opacity varies more steeply with frequency (with beta approx 2.3 between 200 and 600um) than in the model
While exoplanets are now routinely detected, the detection of small bodies in extrasolar systems remains challenging. Since the discovery of sporadic events interpreted as exocomets (Falling Evaporating Bodies) around $beta$ Pic in the early 80s, onl y $sim$20 stars have been reported to host exocomet-like events. We aim to expand the sample of known exocomet-host stars, as well as to monitor the hot-gas environment around stars with previously known exocometary activity. We have obtained high-resolution optical spectra of a heterogeneous sample of 117 main-sequence stars in the spectral type range from B8 to G8. The data have been collected in 14 observing campaigns expanding over 2 years from both hemispheres. We have analysed the Ca ii K&H and Na i D lines in order to search for non-photospheric absorptions originated in the circumstellar environment, and for variable events that could be caused by outgassing of exocomet-like bodies. We have detected non-photospheric absorptions towards 50% of the sample, attributing a circumstellar origin to half of the detections (i.e. 26% of the sample). Hot circumstellar gas is detected in the metallic lines inspected via narrow stable absorptions, and/or variable blue-/red-shifted absorption events. Such variable events were found in 18 stars in the Ca ii and/or Na i lines; 6 of them are reported in the context of this work for the first time. In some cases the variations we report in the Ca ii K line are similar to those observed in $beta$ Pic. While we do not find a significant trend with the age or location of the stars, we do find that the probability of finding CS gas in stars with larger vsin i is higher. We also find a weak trend with the presence of near-infrared excess, and with anomalous ($lambda$ Boo-like) abundances, but this would require confirmation by expanding the sample.
We present a science forecast for the eBOSS survey, part of the SDSS-IV project, which is a spectroscopic survey using multiple tracers of large-scale structure, including luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars (both as a direct probe of structure and through the Ly-$alpha$ forest). Focusing on discrete tracers, we forecast the expected accuracy of the baryonic acoustic oscillation (BAO), the redshift-space distortion (RSD) measurements, the $f_{rm NL}$ parameter quantifying the primordial non-Gaussianity, the dark energy and modified gravity parameters. We also use the line-of-sight clustering in the Ly-$alpha$ forest to constrain the total neutrino mass. We find that eBOSS LRGs ($0.6<z<1.0$) (combined with the BOSS LRGs at $z>0.6$), ELGs ($0.6<z<1.2$) and Clustering Quasars (CQs) ($0.6<z<2.2$) can achieve a precision of 1%, 2.2% and 1.6% precisions, respectively, for spherically averaged BAO distance measurements. Using the same samples, the constraint on $fsigma_8$ is expected to be 2.5%, 3.3% and 2.8% respectively. For primordial non-Gaussianity, eBOSS alone can reach an accuracy of $sigma(f_{rm NL})sim10-15$, depending on the external measurement of the galaxy bias and our ability to model large-scale systematic errors. eBOSS can at most improve the dark energy Figure of Merit (FoM) by a factor of $3$ for the Chevallier-Polarski-Linder (CPL) parametrisation, and can well constrain three eigenmodes for the general equation-of-state parameter (Abridged).
We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 squ. deg. of th e southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between January 2011 and December 2015, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic dataset and resulting data products, including galaxy redshifts, cluster redshifts and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] 3727,3729 and H-delta, and the 4000A break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically-observed cluster members as a function of brightness (relative to m*). Finally, we report several new measurements of redshifts for ten bright, strongly-lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS dataset with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ~20% of the full SPT-SZ sample.
The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا