ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping dust through emission and absorption in nearby galaxies

159   0   0.0 ( 0 )
 نشر من قبل Kathryn Stanonik Kreckel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dust has long been identified as a barrier to measuring inherent galaxy properties. However, the link between dust and attenuation is not straightforward and depends on both the amount of dust and its distribution. Herschel imaging of nearby galaxies undertaken as part of the KINGFISH project allows us to map the dust as seen in emission with unprecedented sensitivity and ~1 kpc resolution. We present here new optical integral field unit spectroscopy for eight of these galaxies that provides complementary 100-200 pc scale maps of the dust attenuation through observation of the reddening in both the Balmer decrement and the stellar continuum. The stellar continuum reddening, which is systematically less than that observed in the Balmer decrement, shows no clear correlation with the dust, suggesting that the distribution of stellar reddening acts as a poor tracer of the overall dust content. The brightest HII regions are observed to be preferentially located in dusty regions, and we do find a correlation between the Balmer line reddening and the dust mass surface density for which we provide an empirical relation. Some of the high-inclination systems in our sample exhibit high extinction, but we also find evidence that unresolved variations in the dust distribution on scales smaller than 500 pc may contribute to the scatter in this relation. We caution against the use of integrated A_V measures to infer global dust properties.



قيم البحث

اقرأ أيضاً

Using new far-infrared imaging from the Herschel Space Observatory with ancillary data from ultraviolet to submillimeter wavelengths, we estimate the total emission from dust and stars of 62 nearby galaxies in the KINGFISH survey in a way that is as empirical and model-independent as possible. We collect and exploit these data in order to measure from the spectral energy distributions (SEDs) precisely how much stellar radiation is intercepted and re-radiated by dust, and how this quantity varies with galaxy properties. By including SPIRE data, we are more sensitive to emission from cold dust grains than previous analyses at shorter wavelengths, allowing for more accurate estimates of dust temperatures and masses. The dust/stellar flux ratio, which we measure by integrating the SEDs, has a range of nearly three decades. The inclusion of SPIRE data shows that estimates based on data not reaching these far-IR wavelengths are biased low. We find that the dust/stellar flux ratio varies with morphology and total IR luminosity. We also find that dust/stellar flux ratios are related to gas-phase metallicity, while the dust/stellar mass ratios are less so. The substantial scatter between dust/stellar flux and dust/stellar mass indicates that the former is a poor proxy of the latter. Comparing the dust/stellar flux ratios and dust temperatures, we show that early-types tend to have slightly warmer temperatures than spiral galaxies, which may be due to more intense interstellar radiation fields, or to different dust grain compositions. Finally, we show that early-types and early-type spirals have a strong correlation between the dust/stellar flux ratio and specific star formation rate, which suggests that the relatively bright far-IR emission of some of these galaxies is due to ongoing star formation and the radiation field from older stars.
We present JCMT SCUBA-2 $450mu$m and $850mu$m observations of 14 Asymptotic Giant Branch (AGB) stars (9 O--rich, 4 C-rich and 1 S--type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with emph{Herschel}/PACS o bservations at $70mu$m and $160mu$m and obtain azimuthally-averaged surface-brightness profiles and their PSF subtracted residuals. The extent of the SCUBA-2 850 $mu$m emission ranges from 0.01 to 0.16 pc with an average of $sim40%$ of the total flux being emitted from the extended component. By fitting a modified black-body to the four-point SED at each point along the radial profile we derive the temperature ($T$), spectral index of dust emissivity ($beta$) and dust column density ($Sigma$) as a function of radius. For all the sources, the density profile deviates significantly from what is expected for a constant mass-loss rate, showing that all the sources have undergone variations in mass-loss during this evolutionary phase. In combination with results from CO line emission, we determined the dust-to-gas mass ratio for all the sources in our sample. We find that, when sources are grouped according to their chemistry, the resulting average dust-to-gas ratios are consistent with the respective canonical values. However we see a range of values with significant scatter which indicate the importance of including spatial information when deriving these numbers.
We present kiloparsec (kpc) spatial resolution maps of the CO-to-H2 conversion factor (alpha_co) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for alpha_co and DGR by assuming that the DGR is approxima tely constant on kpc scales. With this assumption, we can combine maps of dust mass surface density, CO integrated intensity and HI column density to solve for both alpha_co and DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high resolution far-IR maps from the Herschel key program KINGFISH, 12CO J=(2-1) maps from the IRAM 30m large program HERACLES and HI 21-cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our alpha_co results on the more typically used 12CO J=(1-0) scale and show using literature measurements that variations in the line ratio do not effect our results. In total, we derive 782 individual solutions for alpha_co and DGR. On average, alpha_co = 3.1 Msun pc^-2 (K km s^-1)^-1 for our sample with a standard deviation of 0.3 dex. Within galaxies we observe a generally flat profile of alpha_co as a function of galactocentric radius. However, most galaxies exhibit a lower alpha_co in the central kpc---a factor of ~2 below the galaxy mean, on average. In some cases, the central alpha_co value can be factors of 5 to 10 below the standard Milky Way (MW) value of alpha_co,MW =4.4 Msun pc^-2 (K km s^-1)^-1. While for alpha_co we find only weak correlations with metallicity, DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate alpha_co for studies of nearby galaxies.
We have explored the capabilities of dust extinction and $gamma$ rays to probe the properties of the interstellar medium in the nearby anti-centre region. We have jointly modelled the $gamma$-ray intensity and the stellar reddening, E(B-V) as a combi nation of H$_{rm I}$-bright, CO-bright, and ionised gas components. The complementary information from dust reddening and $gamma$ rays is used to reveal the dark gas not seen, or poorly traced, by H$_{rm I}$, free-free, and $^{12}$CO emissions. We compare the total gas column densities, $N_{rm{H}}$, derived from the $gamma$ rays and stellar reddening with those inferred from a similar analysis (Remy et al. 2017) of $gamma$ rays and of the optical depth of the thermal dust emission, $tau_{353}$, at 353 GHz. We can therefore compare environmental variations in specific dust reddening, E(B-V)/$N_{rm H}$, and in dust emission opacity (dust optical depth per gas nucleon), $tau_{353}/N_{rm{H}}$. Over the whole anti-centre region, we find an average E(B-V)/$N_{rm H}$ ratio of $(2.02pm0.48)times$ $10^{-22}$~mag~cm$^2$, with maximum local variations of about $pm30%$ at variance with the two to six fold coincident increase seen in emission opacity as the gas column density increases. In the diffuse medium, the small variations in specific reddening, E(B-V)/$N_{rm H}$ implies a rather uniform dust-to-gas mass ratio in the diffuse parts of the anti-centre clouds. The small amplitude of the E(B-V)/$N_{rm H}$ variations with increasing $N_{rm{H}}$ column density confirms that the large opacity $tau_{353}/N_{rm{H}}$ rise seen toward dense CO clouds is primarily due to changes in dust emissivity. The environmental changes are qualitatively compatible with model predictions based on mantle accretion on the grains and the formation of grain aggregates.
189 - F. Bigiel , A. Leroy , F. Walter 2010
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of HI, H2 and star formation rate (Sigma_HI, Sigma_H2, Sigma_SFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. Sigma_H2, traced by CO intensity, shows a strong correlation with Sigma_SFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2Gyr in large spiral galaxies. Within the star-forming disks of galaxies, Sigma_SFR shows almost no correlation with Sigma_HI. In the outer parts of galaxies, however, Sigma_SFR does scale with Sigma_HI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Sigma_gas - Sigma_SFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Sigma_gas - Sigma_SFR space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا