ﻻ يوجد ملخص باللغة العربية
We show how the Dirac equation in three space-dimensions emerges from the large-scale dynamics of the minimal nontrivial quantum cellular automaton satisfying unitariety, locality, homogeneity, and discrete isotropy, without using the relativity principle. The Dirac equation is recovered for small wave-vector and inertial mass, whereas Lorentz covariance is distorted in the ultra-relativistic limit. The automaton can thus be regarded as a theory unifying scales from Planck to Fermi. A simple asymptotic approach leads to a dispersive Schroedinger equation describing the evolution of narrow-band states at all scales.
In this work we present a derivation of Diracs equation in a curved space-time starting from a Weyl-invariant action principle in 4+K dimensions. The Weyl invariance of Diracs equation (and of Quantum Mechanics in general) is made possible by observi
We discuss the structure of the Dirac equation and how the nilpotent and the Majorana operators arise naturally in this context. This provides a link between Kauffmans work on discrete physics, iterants and Majorana Fermions and the work on nilpotent
A rigorous textit{ab initio} derivation of the (square of) Diracs equation for a single particle with spin is presented. The general Hamilton-Jacobi equation for the particle expressed in terms of a background Weyls conformal geometry is found to be
A nonlinear Schrodinger equation, that had been obtained within the context of the maximum uncertainty principle, has the form of a difference-differential equation and exhibits some interesting properties. Here we discuss that equation in the regime
In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fl