ﻻ يوجد ملخص باللغة العربية
A nonlinear Schrodinger equation, that had been obtained within the context of the maximum uncertainty principle, has the form of a difference-differential equation and exhibits some interesting properties. Here we discuss that equation in the regime where the nonlinearity length scale is large compared to the deBroglie wavelength; just as in the perturbative regime, the equation again displays some universality. We also briefly discuss stationary solutions to a naturally induced discretisation of that equation.
I begin by reviewing the arguments leading to a nonlinear generalisation of Schrodingers equation within the context of the maximum uncertainty principle. Some exact and perturbative properties of that equation are then summarised: those results depe
We obtain novel nonlinear Schr{o}dinger-Pauli equations through a formal non-relativistic limit of appropriately constructed nonlinear Dirac equations. This procedure automatically provides a physical regularisation of potential singularities brought
We update our understanding of nonlinear Schrodinger equations motivated through information theory. In particular we show that a $q-$deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouri
In this paper, classical small perturbations against a stationary solution of the nonlinear Schrodinger equation with the general form of nonlinearity are examined. It is shown that in order to obtain correct (in particular, conserved over time) nonz
Utilization of a quantum system whose time-development is described by the nonlinear Schrodinger equation in the transformation of qubits would make it possible to construct quantum algorithms which would be useful in a large class of problems. An ex