ﻻ يوجد ملخص باللغة العربية
We introduce RNADE, a new model for joint density estimation of real-valued vectors. Our model calculates the density of a datapoint as the product of one-dimensional conditionals modeled using mixture density networks with shared parameters. RNADE learns a distributed representation of the data, while having a tractable expression for the calculation of densities. A tractable likelihood allows direct comparison with other methods and training by standard gradient-based optimizers. We compare the performance of RNADE on several datasets of heterogeneous and perceptual data, finding it outperforms mixture models in all but one case.
Estimation of causal effects is fundamental in situations were the underlying system will be subject to active interventions. Part of building a causal inference engine is defining how variables relate to each other, that is, defining the functional
Time series forecasting is an important problem across many domains, playing a crucial role in multiple real-world applications. In this paper, we propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (
Density estimation is a fundamental problem in both statistics and machine learning. In this study, we proposed Roundtrip as a general-purpose neural density estimator based on deep generative models. Roundtrip retains the generative power of generat
Given a set of empirical observations, conditional density estimation aims to capture the statistical relationship between a conditional variable $mathbf{x}$ and a dependent variable $mathbf{y}$ by modeling their conditional probability $p(mathbf{y}|
The nonlinear vector autoregressive (NVAR) model provides an appealing framework to analyze multivariate time series obtained from a nonlinear dynamical system. However, the innovation (or error), which plays a key role by driving the dynamics, is al